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1 Introduction

1.1 Overview

The LEON2-FT VHDL model implements a 32-bit processor conforming to the IEEE-1754 
(SPARC V8) architecture. It is designed for embedded applications with the following 
features on-chip: separate instruction and data caches, hardware multiplier and divider, 
memory management unit, interrupt controller, debug support unit with trace buffer, two 24-
bit timers, two UARTs, power-down function, watchdog, 16-bit I/O port, PWM, and a 
flexible memory controller. New modules can easily be added using the on-chip AMBA 
AHB/APB buses. The VHDL model is fully synthesisable with most synthesis tools and can 
be implemented on both FPGAs and ASICs. Simulation can be done with all VHDL-87 
compliant simulators. 

The LEON2-FT design includes advanced fault-tolerance features to withstand arbitrary 
single-event upset (SEU) errors without loss of data. The fault-tolerance is provided at design 
(VHDL) level, and does not require an SEU-hard semiconductor process, nor a custom cell 
library or special back-end tools.

Note: this manual describes the full functionality of the LEON2-FT model. Through the 
model’s configuration record (see “Model Configuration” on page 88), parts of the described 
functionality can be suppressed or modified to generate a smaller or faster implementation.

Note: Due to historical reasons, this documentation and the LEON2-FT VHDL model makes 
use of the term cache set to describe a cache way. When reading the documentation and code, 
cache set can (should) always be replaced with cache way.
Aeroflex Gaisler / ESA
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1.2 Functional overview

A block diagram of LEON2-FT can be seen in figure 1.

Figure 1: LEON2-FT block diagram (blue items are not provided with model

SPARC V8

I-Cache D-Cache

IEEE-754 FPU

Memory
Controller

AMBA AHB

UARTS

Timers IrqCtrl

I/O port

AMBA APB

AHB/APB
Bridge

AHB
Controller

PCI

LEON2-FT processor 

I/OPROM SRAM

8/16/32/39-bits memory bus

Debug
Support Unit

Debug
Serial Link

AHB interface

SDRAM

SRMMU (opt.)

MEIKO/GRFPU
(InSilicon)

Integer unit
(opt.)

(opt.)

1.2.1 Integer unit

The LEON integer unit implements the full SPARC V8 standard, including all multiply and 
divide instructions. The number of register windows is configurable within the limit of the 
SPARC standard (2 - 32), with a default setting of 8.

1.2.2 Floating-point unit

The LEON2-FT model can be interfaced to the Meiko FPU core owned by Oracle, or the 
more performant GRFPU provided by Aeroflex Gaisler.

No FPU core is provided with the LEON2-FT IP core.

1.2.3 Cache sub-system

Separate, multi-set instruction and data caches are provided, each configurable with 1 - 4 
sets, 1 - 64 kbyte/set, 16 - 32 bytes per line. Sub-blocking is implemented with one valid bit 
per 32-bit word. The instruction cache uses streaming during line-refill to minimise refill 
latency. The data cache uses write-through policy and implements a double-word write-
Aeroflex Gaisler / ESA
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buffer. The data cache can also perform bus-snooping on the AHB bus when the MMU is not 
present/enabled.

1.2.4 Memory Management Unit

The LEON processor includes the interface for an optional memory management unit 
(MMU), compatible with the SPARC V8 Reference MMU specification. The MMU uses 
virtual caches and translate addresses between the processor’s virtual address space and the 
AHB physical address space. The physical address space can be extended to 36 bits through 
an AHB side-band signal. The MMU translation look-aside buffer (TLB) can be configured 
in both size and organisation (shared/separate, 1 - 32 TLB entries, incremental or LRU 
replacement).

Note that only the MMU interface but not the MMU itself is provided with the LEON2FT 
processor.

1.2.5 Debug support unit

The (optional) debug support unit (DSU) allows non-intrusive debugging on target hardware. 
The DSU allows to insert breakpoints and watchpoints, and access to all on-chip registers 
from a remote debugger. A trace buffer is provided to trace the executed instruction flow and/
or AHB bus traffic. The DSU has no impact on performance and has low area complexity. 
Communication to an outside debugger (e.g. GDB) is done using a dedicated UART 
(RS232). The AHB trace buffer implements optional filtering for specific masters and AHB 
address areas to reduce the amount of AHB transactions stored.

1.2.6 Memory interface

The flexible memory interface provides a direct interface to PROM, memory mapped I/O 
devices, static RAM (SRAM) and synchronous dynamic RAM (SDRAM). The memory 
areas can be programmed to either 8-, 16- or 32-bit data width. 8- and 32-bit ROM/RAM 
memories can optionally be protected using a 7-bit BCH code, providing single-error 
correction and double-error detection capabilities.

1.2.7 Timers

Two 24-bit timers are provided on-chip. The timers can work in periodic or one-shot mode. 
Both timers are clocked by a common 10-bit prescaler. 

1.2.8 Watchdog

A 24-bit watchdog is provided on-chip. The watchdog is clocked by the timer prescaler. 
When the watchdog reaches zero, an output signal (WDOG) is asserted. This signal can be 
used to generate system reset.

1.2.9 UARTs

Two 8-bit UARTs are provided on-chip. The baud-rate is individually programmable and 
data is sent in 8-bits frames with one stop bit. Optionally, one parity bit can be generated and 
checked.
Aeroflex Gaisler / ESA
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1.2.10 Interrupt controller

The interrupt controller manages a total of 15 interrupts, originating from internal and 
external sources. Each interrupt can be programmed to one of two priority levels. A chained, 
secondary controller for up to 32 additional interrupts is also available. As optional feature, 
the interrupt controller can be implemented with functionality to allows dynamic remapping 
between bus interrupt lines and processor interrupt lines.

1.2.11 Parallel I/O port

A 32-bit parallel I/O port is provided. 16 bits are always available and can be individually 
programmed by software to be an input or an output. An additional 16 bits are only available 
when the memory bus is configured for 8- or 16-bit operation. Some of the bits have alternate 
usage, such as UART inputs/outputs and external interrupts inputs. The standard PIO pins 
can optionally be used as 8 complementary pulse-width modulation outputs with 
configurable (common) period and duty cycles.

1.2.12 AMBA on-chip buses

The processor has a full implementation of AMBA AHB and APB on-chip buses. A flexible 
configuration scheme makes it simple to add new IP cores. Also, all provided peripheral units 
implement the AMBA AHB/APB interface making it easy to add more of them, or reuse 
them on other processors using AMBA.

1.2.13 Watchpoint registers

To aid software debugging, up to four watchpoint registers can be configured. Each register 
can cause a trap on an arbitrary instruction or data address range. If the debug support unit is 
enabled, the watchpoints can be used to enter debug mode.

1.3 Performance

Using 4k + 4k caches and a 16x16 multiplier, the dhrystone 2.1 benchmark reports 1,550 
iteration/s/MHz using the gcc-2.95.2 compiler (-O2). This translates to 0.9 dhrystone MIPS/
MHz using the VAX 11/780 value a reference for one MIPS.
Aeroflex Gaisler / ESA
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2 Simulation and synthesis

2.1 Un-packing the tar-file

The model is distributed as a gzipped tar-file; leon2ft-y.x.tar.gz. On unix systems, use the 
command ‘gunzip -c leon2ft-.y.x.tar.gz | tar xf -’ to unpack the model in the current directory. 
The LEON model has the following directory structure:

leon top directory
leon/Makefile top-level makefile
leon/boards fpga board support packages
leon/leon/ LEON vhdl model
leon/modelsim/ Modelsim simulator support files
leon/pmon Boot-monitor
leon/syn Synthesis support files
leon/tbench LEON VHDL test bench
leon/tsource LEON test bench (C source)

2.2 Configuration

The LEON model is highly configurable, allowing the model to be customised for a certain 
application or target technology. A graphical configuration tool based on the linux kernel 
tkconfig scripts is used to configure the model. In the leon top-level directory, do a ‘make 
xconfig’ on unix platforms or a ‘make wconfig’ on Windows/Cygwin platforms. After a 
configuration has been saved, the corresponding VHDL configuration file (device.vhd) will 
generated and installed when doing a ‘make dep’. Note that a working installation of GCC 
and Tcl/Tk must be installed on the host for tkconfig to work. A configuration can also be 
made by editing leon/device.vhd directly. The tkconfig tools has help texts for each 
configuration option - use those to derive a suitable configuration. For a more detailed 
description of the configuration options and their effects, see “Model Configuration” on 
page 88. The tkconfig tool allows loading of pre-defined configurations using the ‘Load 
configuration’ option and a few configuration files (config_xxx) are provided in the tkconfig 
directory.

2.3 Simulation

2.3.1 Compilation of the model

On unix systems (or MS-windows with cygwin installed), the model and test benches can be 
built using ‘make’ in the top directory. Doing make without a target (or ‘make all’) will build 
the model and test benches using the modeltech compiler. Doing a ‘make vss’ will build the 
model with Synopsys VSS.

To use another simulator, the makefiles in the leon and tbench sub-directories have to be 
modified to reflect the simulator commands. On non-unix systems, the compile.bat file in the 
leon and tbench directories can be used to compile the model in correct order.

2.3.2 Generic test bench

A generic test bench is provided in tbench/tbgen.vhd. This test bench allows to generate a 
model of a LEON system with various memory sizes/types by setting the appropriate 
Aeroflex Gaisler / ESA
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generics. The file tbench/tbleon.vhd contains a number of alternative configurations using 
the generic test bench:

• TB_FUNC8, TB_FUNC32, TB_FUNC_SD: Functional tests performing a quick check 
of most on-chip functions using either 8- or 32-bit external static ram, or 32-bit SDRAM.

• TB_MEM: Testing all on-chip memory with patterns of 0x55 and 0xAA.

• TB_FULL: Combined memory and functional tests, suitable to generate test vectors for 
manufacturing.

Once the LEON model have been correctly configured and compiled, use the TB_FUNC32 
test bench to verify the behaviour of the model. Simulation should be started in the top 
directory. Simulation can be started, for example, by typing vsim work.tb_func32 in 
a terminal and then, in the Modelsim shell, run -all command.

The output from the simulation should be similar to:

# # *** Starting LEON system test ***
# # Memory interface test
# # Cache memory
# # Register file
# # Interrupt controller
# # Timers, watchdog and power-down
# # Parallel I/O port
# # UARTs
# # Test completed OK, halting with failure
# ** Failure: TEST COMPLETED OK, ending with FAILURE 

Simulation is halted by generating a failure.

The supplied test program which is run by the test benches only tests on-chip peripherals and 
interfaces, compliance to the SPARC standard has been tested with proprietary test vectors, 
not supplied with the model. To re-compile the test program, the Bare-C GNU Cross-
Compiler System (BCC) provided by Aeroflex Gaisler (www.gaisler.com) needs to be 
installed; BCC versions 3.4.x and 4.4.x have been used for the current release, other versions 
might work but it is not guaranteed. The test programs are in the tsource directory and are 
built by executing ‘make’ in the tsource directory. The makefile will build the program and 
generate prom and ram images for the test bench.

The test program probes the LEON configuration register to determine which options are 
enabled in the particular LEON configuration, and only tests those. E.g., if no FPU is present, 
the test program will not attempt to perform FPU testing.

2.3.3 Disassembler

A SPARC disassembler is provided in the DEBUG package. It is used by the test bench to 
disassemble the executed instructions and print them to stdout (if enabled). Test bench 
configurations with names ending in a ‘_disas’ have disassembly enabled (e.g. 
TB_FUNC32_DISAS)
Aeroflex Gaisler / ESA
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2.3.4 Simulator specific support

The file modelsim/wave.do is a macro file for modelsim to display some useful internal 
LEON signals. A modelsim init file (modelsim.ini) is present in the top directory and in the 
leon and tbench directory to provide appropriate library mapping. The complete model can 
be compiled from within modelsim by executing the modelsim/compile.do file:

vsim> do modelsim/compile.do

A .synopsys_vss.setup file is present in the top directory and in the leon and tbench directory 
to provide appropriate library mapping for Synopsys VSS.

2.3.5 Post-synthesis simulation

The supplied test-benches can be used to simulate the synthesised netlist. Use the following 
procedure:

• Compile the complete model (i.e. do a ‘make’ at the top level). It is essential that you use 
the same configuration as during synthesis! This step is necessary because the test bench 
uses the target, config and device packages.

• In the top directory, compile the simulation libraries for you ASIC/FPGA technology, and 
then your VHDL netlist.

• Cd to tbench, and do ‘make clean all’. This will rebuild the test bench, ‘linking’ it with 
your netlist.

• Cd back to the top directory and simulate you test bench as usual.

• If you get problems with ‘X’ during simulation, use the TB_FULL test bench to make sure 
that all on-chip memories are properly initialised.

2.4 Synthesis

2.4.1 General

The model is written with synthesis in mind and has been tested with Synopsys DC and 
Synplicity Synplify synthesis tools. Technology specific cells are used to implement the IU/
FPU register files, cache rams and pads. These cells can be automatically inferred (Synplify 
only) or directly instantiated from the target library (Synopsys).

Non-synthesisable code is enclosed in a set of embedded pragmas as shown below:

-- pragma translate_off

... non-synthesisable code...

-- pragma translate_on

This works with most synthesis tools, although in Synopsys requires the 
hdlin_translate_off_skip_text variable be set to “true”.

Synthesis should be done from the ‘syn’ directory. It includes scripts/project-files for 
Synplify and Synopsys-DC. The source files are read from the leon directory, so it is essential 
that the model has been correctly configured before. 
Aeroflex Gaisler / ESA
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2.4.2 Synplify

To synthesise LEON using Synplify, start synplify in the syn directory and open leon.prj. 
Make sure you use a version later than Synplify-8.2, some previous versions could generate 
a incorrect netlist under certain circumstances.

2.4.3 Synopsys-DC

To synthesise LEON using Synopsys DC, start synopsys in the syn directory and execute the 
script leon.dcsh using dc_shell-xg-t -f leon.dcsh. Before executing the script, edit the 
beginning of the script to ensure that the library search paths reflects your synopsys 
installation and that the timing constraints are appropriate. The top-level constraints are used 
to generate the appropriate synopsys constraints commands.

2.5 GRFPU integration

The GRFPU floating-point unit is not delivered with the standard LEON2-FT model, but can 
be obtained separately from Aeroflex Gaisler. The GRFPU is delivered as synthesized netlist, 
or encrypted RTL. Questions on the GRFPU should be directed to Aeroflex Gaisler via 
sales@gaisler.com.
Aeroflex Gaisler / ESA
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3 LEON integer unit

The LEON integer unit (IU) implements SPARC integer instructions as defined in SPARC 
Architecture Manual version 8. It is a new implementation, not based on any previous 
designs. The implementation is focused on portability and low complexity. 

3.1 Overview

The LEON integer unit has the following features:

• 5-stage instruction pipeline
• Separate instruction and data cache interface
• Support for 2 - 32 register windows
• Configurable multiplier (16x16, 32x1, 32x8, 32x16 & 32x32)
• Optional 16x16 bit MAC with 40-bit accumulator
• Radix-2 divider (non-restoring)

Figure 2 shows a block diagram of the integer unit.

Figure 2: LEON integer unit block diagram
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3.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 5 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched from 
the instruction cache. Otherwise, the fetch is forwarded to the memory controller. The 
instruction is valid at the end of this stage and is latched inside the IU.

2. DE (Decode): The instruction is decoded and the operands are read. Operands may come 
from the register file or from internal data bypasses. CALL and Branch target addresses 
are generated in this stage.

3. EX (Execute): ALU, logical, and shift operations are performed. For memory operations 
(e.g., LD) and for JMPL/RETT, the address is generated.

4. ME (Memory): Data cache is accessed. For cache reads, the data will be valid by the end 
of this stage, at which point it is aligned as appropriate. Store data read out in the execution 
stage is written to the data cache at this time.

5. WR (Write): The result of any ALU, logical, shift, or cache read operations are written 
back to the register file.

Table 1 lists the cycles per instruction (assuming cache hit and no load interlock):

Table 1: Instruction timing

Instruction Cycles

JMPL 2

Double load 2

Single store 2

Double store 3

SMUL/UMUL 1/2/4/5/35*

SDIV/UDIV 35

Taken Trap 4

Atomic load/store 3

All other instructions 1

* depends on multiplier configuration

3.3 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL 
UMULCC and SMULCC. These instructions perform a 32x32-bit integer multiply, 
producing a 64-bit result. SMUL and SMULCC performs signed multiply while UMUL and 
UMULCC performs unsigned multiply. UMULCC and SMULCC also set the condition 
codes to reflect the result. Several multiplier implementation are provided, making it 
possible to choose between area, delay and latency (see “Integer unit configuration” on 
page 89 for more details).
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3.4 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented: 
UMAC and SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit 
result, and adds the result to a 40-bit accumulator made up by the 8 lsb bits from the %y 
register and the %asr18 register. The least significant 32 bits are also written to the 
destination register. SMAC works similarly but performs signed multiply and accumulate. 
The MAC instructions execute in one clock but have two clocks latency, meaning that one 
pipeline stall cycle will be inserted if the following instruction uses the destination register 
of the MAC as a source operand.

Assembler syntax:

umac rs1, reg_imm, rd

smac rs1, reg_imm, rd

Operation: 

prod[31:0] = rs1[15:0] * reg_imm[15:0]

result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]

(Y[7:0] & %asr18[31:0]) = result[39:0]

rd = result[31:0]

%asr18 can be read and written using the rdasr and wrasr instructions.

3.5 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV/UDIV/SDIVCC/
UDIVCC). The divide instructions perform a 64-by-32 bit divide and produce a 32-bit result. 
Rounding and overflow detection is performed as defined in the SPARC V8 standard.

3.6 Register file SEU protection

To prevent erroneous operations from SEU errors in the main register file, each word can be 
protected using one parity bit, two parity bits or a 7-bit EDAC checksum. Checking of the 
parity or EDAC bits is done every time a fetched register value is used in an instruction. If a 
correctable error is detected, the erroneous data is corrected before being used. At the same 
time, the corrected register value is also written back to the register file. A correction 
operation incurs a delay 4 clock cycles, but has no other software visible impact. If an un-
correctable error is detected, a register error trap (tt=0x20) is generated.

The implemented protection scheme has an impact on double-store instructions: the write-
buffer will delay the request of the memory bus one clock cycle in order to not start any 
memory store cycle before the second store data word has been checked and (potentially) 
corrected.
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The register file protection operation is controlled using application-specific register 16 
(%asr16). The register is accessed using the RDASR/WRASR instructions.

Figure 1: Register file protection control register (%asr16)

012345678910111231

DITETCB[6:0]CNT[2:0]RESERVED

• [0]: DI - disable checking. If set, will disable the register-file checking function. - 0 after reset
• [1]: TE - Test enable. - 0 after reset
• [8:2] TCB[6:0] - Test checkbits.
• [11:9] CNT[2:0] - Error counter. This field will be incremented for each corrected error.

The protection can be disabled by setting the DI bit (this bit is set to ‘0’ after reset). By setting 
the TE bit, errors can be inserted in the register file to test the protection function. If a 7-bit 
EDAC is used and the test mode is enabled, the register checksum is XORed with the TCB 
field before written to the register file. If 2-bit parity is used, the parity bits and data bit 31 
of dual-port ram 1 (corresponding to %rs1 operand) are XORed with TCB[2:0], while the 
parity bits and data bit 31 of dual-port ram 2 (corresponding to %rs2 operand) are XORed 
with TCB[5:3]. The CNT field is incremented each time a register correction is performed, 
but saturates at “111”.

3.7 Processor reset operation

The processor is reset by asserting the RESET input for at least one clock cycle. The 
following table indicates the reset values of the registers which are affected by the reset. All 
other registers maintain their value (or are undefined).

Table 2: Processor reset values

Register Reset value

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1

CCR (cache control register) 0x0

Execution will start from address 0.
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3.8 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented 
traps and their individual priority.

Table 3: Trap allocation and priority

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Hardware breakpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 - 
0xFF 

16 Software trap instruction (TA)
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3.9 Hardware breakpoints

The integer unit can be configured to include up to four hardware breakpoints. Each 
breakpoint consists of a pair of application-specific registers (%asr24/25, %asr26/27, 
%asr28/30 and %asr30/31) registers; one with the break address and one with a mask:

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231

DSWMASK[31:2]
%asr25, %asr27
%asr29, %asr31

Figure 3: Watch-point registers

IF

Any binary aligned address range can be watched - the range is defined by the WADDR field, 
masked by the WMASK field (WMASK[x] = 1 enables comparison). On a breakpoint hit, 
trap 0x0B is generated. By setting the IF, DL and DS bits, a hit can be generated on 
instruction fetch, data load or data store. Clearing these three bits will effectively disable the 
breakpoint function. All the three bits are 0 after reset.

3.10 Floating-point unit

The LEON model can be connected to the Meiko floating-point core or the GRFPU core, 
thereby providing full floating-point support according to the SPARC-V8 standard. 

The Meiko FPU is attached using an integrated interface inside the IU pipeline. The 
integrated FPU interface does not implement a floating-point queue, and the processor is 
stopped during the execution of floating-point instructions. This means that QNE bit in the 
%fsr register always is zero, and any attempts of executing the STDFQ instruction will 
generate a FPU exception trap. 

The GRFPU interface is controlled by a dedicated controller (GRFPC) which lets the FPU 
instructions execute in parallel with IU instructions and only halts the processor in case of 
data- or resource dependencies. The GRFPU and GRFPC IP cores can be licensed separately 
from Aeroflex Gaisler.

When the LEON2-FT model is configured to use the GRFPU, the register file protection 
control register (%asr16) will control EDAC function of both integer and floating-point 
register files. When the test mode is enabled, integer instructions will insert errors in the 
integer register file while floating-point instructions will insert errors in the FP register file. 
Disabling EDAC protection will disable EDAC protection for both registers. The test 
checkbits field of the register file protection register is used to insert errors in both register 
files. The counter field is incremented for every register correction (in integer or floating-
point registers).

The FPU interface is enabled by setting the FPU element of the configuration record.
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4 Cache sub-system

4.1 Overview

Table 4: ASI usage

ASI Usage

0x0, 0x1, 0x2, 0x3 Forced cache miss (replace if cacheable)

0x4, 0x7 Forced cache miss (update on hit)

0x5 Flush instruction cache

0x6 Flush data cache

0x8, 0x9, 0xA, 0xB Normal cached access (replace if cacheable)

0xC Instruction cache tags

0xD Instruction cache data

0xE Data cache tags

0xF Data cache data

0x14 Data cache context id (mmu version only)

0x15 Instruction cache context id (mmu version only)

0x1c Bypass mmu translation (mmu version only)

0x19 MMU registers (mmu version only)

The LEON processor implements a Harvard architecture with separate instruction and data 
buses, connected to two independent cache controllers. In addition to the address, a SPARC 
processor also generates an 8-bit address space identifier (ASI), providing up to 256 separate, 
32-bit address spaces. During normal operation, the LEON processor accesses instructions 
and data using ASI 0x8 - 0xB as defined in the SPARC standard. Using the LDA/STA 
instructions, alternative address spaces can be accessed. The table shows the ASI usage for 
LEON. Only ASI[3:0] are used for the mapping, ASI[7:4] have no influence on operation.

Access to ASI 4 and 7 will force a cache miss, and update the cache if the data was previously 
cached. Access with ASI 0 - 3 will force a cache miss, update the cache if the data was 
previously cached, or allocated a new line if the data was not in the cache and the address 
refers to a cacheable location. The cacheable areas are by default the prom and ram areas, but 
are configurable in the model:

Table 5: Default cache table

Address range Area Cached

0x00000000 - 0x1FFFFFFF PROM Cacheable

0x20000000 - 0x3FFFFFFF I/O Non-cacheable

0x40000000 -0x7FFFFFFF RAM Cacheable

0x80000000 -0xFFFFFFFF Internal (AHB) Non-cacheable

Both instruction and data cache controllers can be separately configured to implement a 
direct-mapped cache or a multi-set cache with set associativity of 2 - 4. The set size is 
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configurable to 1 - 64 kbyte divided into cache lines with 8 - 32 bytes of data. In the multi-
set configuration one of four replacement policies can be selected: least-recently-used 
(LRU), least-recently-replaced (LRR), (pseudo-) random allocation/replacement and 
(pseudo-) random replacement. If the LRR algorithm is used the cache has to be 2-way 
associative. A cache line can be locked in the instruction or data cache preventing it from 
being replaced by the replacement algorithm.

NOTE: The LRR algorithm uses one extra bit in tag rams to store replacement history. The 
LRU algorithm needs extra flip-flops per cache line to store access history. The random 
replacement algorithm is implemented through modulo-N counter that selects which line to 
evict on cache miss. 

4.2 Instruction cache

4.2.1 Operation

The instruction cache can be configured as a direct-mapped cache or as a multi-set cache 
with associativity of 2 - 4 implementing either LRU or random replacement policies or as 2-
way associative cache implementing LRR algorithm. The set size is configurable to 1 - 64 
kbyte and divided into cache lines of 16- 32 bytes. Each line has a cache tag associated with 
it consisting of a tag field, valid field with one valid bit for each 4-byte sub-block and 
optional LRR and lock bits. On an instruction cache miss to a cachable location, the 
instruction is fetched and the corresponding tag and data line updated. In a multi-set 
configuration a line to be replaced is chosen according to the replacement policy.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled 
from main memory starting at the missed address and until the end of the line. At the same 
time, the instructions are forwarded to the IU (streaming). If the IU cannot accept the 
streamed instructions due to internal dependencies or multi-cycle instruction, the IU is halted 
until the line fill is completed. If the IU executes a control transfer instruction (branch/
CALL/JMPL/RETT/TRAP) during the line fill, the line fill will be terminated on the next 
fetch. If instruction burst fetch is enabled, incremental AHB bursts will be used on 
consecutive instruction fetches, even when the cache is disabled. In this case, the fetched 
instructions are only forwarded to the IU, the cache is not updated and a staggered burst will 
be observed.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid 
bit in the cache tag will not be set. If the IU later fetches an instruction from the failed 
address, a cache miss will occur, triggering a new access to the failed address. If the error 
remains, an instruction access error trap (tt=0x1) will be generated.
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4.2.2 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 4

Figure 4: Instruction cache tag layout examples

07891031

VALIDATAG LRR LOCK

03891231

VALIDATAG LRR LOCK

Tag for 1 kbyte set, 32 bytes/line

Tag for 4 kbyte set, 16bytes/line

00 0000

:

Field Definitions:

• [31:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
• [9]: LRR - Used by LRR algorithm to store replacement history. 0 if other replacement policy is 

used.
• [8]: LOCK - Locks a cache line when set. 0 if instruction cache locking was not enabled in the 

configuration.
• [7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. 

These bits is set when a sub-block is filled due to a successful cache miss; a cache fill which results 
in a memory error will leave the valid bit unset. A FLUSH instruction will clear all valid bits. V[0] 
corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and so on.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache 
configuration. As an example, a 4 kbyte cache with 16 bytes per line would only have four 
valid bits and 20 tag bits. The cache rams are sized automatically by the ram generators in 
the model.

4.3 Data cache

4.3.1 Operation

The data cache can be configured as a direct-mapped cache or as a multi-set cache with 
associativity of 2 - 4 implementing either LRU or (pseudo-) random replacement policy or 
as 2-way associative cache implementing LRR algorithm. The set size is configurable to 1 - 
64 kbyte and divided into cache lines of 16 - 32 bytes. Each line has a cache tag associated 
with it consisting of a tag field, valid field with one valid bit for each 4-byte sub-block and 
optional lock and LRR bits. On a data cache read-miss to a cachable location 4 bytes of data 
are loaded into the cache from main memory. The write policy for stores is write-through 
with no-allocate on write-miss. In a multi-set configuration a line to be replaced on read-miss 
is chosen according to the replacement policy. If a memory access error occurs during a data 
load, the corresponding valid bit in the cache tag will not be set. and a data access error trap 
(tt=0x9) will be generated.
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4.3.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data 
until it is sent to the destination device. For half-word or byte stores, the store data is 
replicated into proper byte alignment for writing to a word-addressed device, before being 
loaded into one of the WRB registers. The WRB is emptied prior to a load-miss cache-fill 
sequence to avoid any stale data from being read in to the data cache. 

Since the processor executes in parallel with the write buffer, a write error will not cause an 
exception to the store instruction. Depending on memory and cache activity, the write cycle 
may not occur until several clock cycles after the store instructions has completed. If a write 
error occurs, the currently executing instruction will take trap 0x2b.

Note: the 0x2b trap handler should flush the data cache, since a write hit would update the 
cache while the memory would keep the old value due the write error.

4.3.3 Data cache snooping

The data cache can optionally perform snooping on the AHB bus. When snooping is enabled, 
the data cache controller will monitor write accesses to the AHB bus performed by other 
AHB masters (DMA). When a write access is performed to a cacheable memory location, 
the corresponding cacheline will be invalidated in the data cache if present. Cache snooping 
has no overhead and does not affect performance. It can be dynamically enabled/disabled 
through bit 23 in the cache control register. Note that snooping is an optional feature and 
must be enabled in the VHDL configuration. Cache snooping requires the target technology 
to implement dual-port memories, which will be used to implement the cache tag RAM. It is 
not possible to enable snooping when an MMU is present in the system, since the cache 
addresses are virtual and the AHB addresses are physical.

4.3.4 Data cache tag

A data cache tag entry consists of several fields as shown in figure 5:

Figure 5: Data cache tag layout

07891031

VALIDATAG LRR LOCK

Field Definitions:

• [31:10]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
• [9]: LRR - Used by LRR algorithm to store replacement history. ‘0’ if other replacement policy is 

used.
• [8]: LOCK - Locks a cache line when set. ‘0’ if instruction cache locking was not enabled in the 

configuration.
• [3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data. 

These bits is set when a sub-block is filled due to a successful cache miss; a cache fill which results 
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in a memory error will leave the valid bit unset. V[0] corresponds to address 0 in the cache line, 
V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache 
configuration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight 
valid bits and 21 tag bits. The cache rams are sized automatically by the ram generators in 
the model.

4.4 Cache flushing

The instruction and data cache is flushed by executing the FLUSH instruction, setting the FI 
bit in the cache control register, or by writing to any location with ASI=0x5. The flushing 
will take one cycle per cache line and set during which the IU will not be halted, but during 
which the instruction cache will be disabled. When the flush operation is completed, the 
cache will resume the state (disabled, enabled or frozen) indicated in the cache control 
register.

4.5 Diagnostic cache access

Tags and data in the instruction and data cache can be accessed through ASI address space 
0xC, 0xD, 0xE and 0xF by executing LDA and STA instructions. Address bits making up the 
cache offset will be used to index the tag to be accessed while the least significant bits of the 
bits making up the address tag will be used to index the cache set. 

Diagnostic read of tags is possible by executing an LDA instruction with ASI=0xC for 
instruction cache tags and ASI=0xE for data cache tags. A cache line and set are indexed by 
the address bits making up the cache offset and the least significant bits of the address bits 
making up the address tag. Similarly, the data sub-blocks may be read by executing an LDA 
instruction with ASI=0xD for instruction cache data and ASI=0xF for data cache data. The 
sub-block to be read in the indexed cache line and set is selected by A[4:2].

The tags can be directly written by executing a STA instruction with ASI=0xC for the 
instruction cache tags and ASI=0xE for the data cache tags. The cache line and set are 
indexed by the address bits making up the cache offset and the least significant bits of the 
address bits making up the address tag. D[31:10] is written into the ATAG field (see above) 
and the valid bits are written with the D[7:0] of the write data. Bit D[9] is written into the 
LRR bit (if enabled) and D[8] is written into the lock bit (if enabled). The data sub-blocks 
can be directly written by executing a STA instruction with ASI=0xD for the instruction 
cache data and ASI=0xF for the data cache data. The sub-block to be read in the indexed 
cache line and set is selected by A[4:2].

Note that diagnostic access to the cache is not possible during a FLUSH operation and will 
cause a data exception (trap=0x09) if attempted.

4.6 Cache line locking

In a multi-set configuration the instruction and data cache controllers can be configured with 
optional lock bit in the cache tag. Setting the lock bit prevents the cache line to be replaced 
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by the replacement algorithm. A cache line is locked by performing a diagnostic write to the 
instruction tag on the cache offset of the line to be locked setting the Address Tag field to the 
address tag of the line to be locked, setting the lock bit and clearing the valid bits. The locked 
cache line will be updated on a read-miss and will remain in the cache until the line is 
unlocked. The first cache line on certain cache offset is locked in the set 0. If several lines on 
the same cache offset are to be locked the locking is performed on the same cache offset and 
in sets in ascending order starting with set 0. The last set can not be locked and is always 
replaceable. Unlocking is performed in descending set order.

NOTE: Setting the lock bit in a cache tag and reading the same tag will show if the cache line 
locking was enabled during the LEON configuration: the lock bit will be set if the cache line 
locking was enabled otherwise it will be 0.

4.7 Cache parity protection

Depending on the configuration of the VHDL model, the caches can be provided with one or 
two parity bits per tag and per 4-byte data sub-block. The tag parity is generated from the tag 
value, the valid bits and optionally the tag address. By including the tag address, it is also 
possible to detect errors in the cache ram address decoding logic. Similarly, the data sub-
block parity is derived from the sub-block address and the sub-block data. The parity bits are 
written simultaneously with the associated tag or sub-block and checked on each access. If 
two parity bits are configured, the bits correspond to the parity of odd and even data (tag) bits.

If a tag parity error is detected during a cache access, a cache miss will be generated and the 
tag (and data) will be automatically updated. All valid bits except the one corresponding to 
the newly loaded data will be cleared. If a data sub-block parity error occurs, a miss will also 
be generated but only the failed sub-block will be updated with data from main memory.

When the MMU is enabled, the tag parity generation will include the 8-bit context field. 
Parity errors will be handled in the same way as when the MMU is disabled.

4.8 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache 
Control Register (CCR) (figure 5). Each cache can be in one of three modes: disabled, 
enabled and frozen. If disabled, no cache operation is performed and load and store requests 
are passed directly to the memory controller. If enabled, the cache operates as described 
above. In the frozen state, the cache is accessed and kept in sync with the main memory as if 
it was enabled, but no new lines are allocated on read misses.
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Figure 6: Cache control register
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• [31:30]: Data cache replacement policy (DREPL) - 01 - random, 10 - least-recently replaced 
(LRR), 11 - least-recently used (LRU). Read-only register.

• [29:28]: Instruction cache replacement policy (IREPL) - 01 - random, 10 - least-recently replaced 
(LRR), 11 - least-recently used (LRU). Read-only register.

• [27:26]: Instruction cache associativity (ISETS) - Number of sets in the instruction cache - 1: 00 
- direct mapped, 01 - 2-way associative, 10 - 3-way associative, 11 - 4-way associative. Read-only 
register.

• [25:24]: Data cache associativity (DSETS) - Number of sets in the data cache - 1: 00 - direct 
mapped, 01 - 2-way associative, 10 - 3-way associative, 11 - 4-way associative. Read-only 
register.

• [23]: Data cache snoop enable [DS] - if set, will enable data cache snooping. Value 0 after reset.
• [22]: Flush data cache (FD). If set, will flush the data cache. Always reads as zero.
• [21]: Flush Instruction cache (FI). If set, will flush the instruction cache. Always reads as zero.
• [20:19]: Cache parity bits (CPC) - Indicates how many parity bits are used to protect the caches 

(00=none, 01=1, 10=2). Read-only register.
• [18:17]: Cache parity test bits. (CPTE). These bits are XOR’ed to the data and tag parity bits 

during diagnostic writes.
• [16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch. Value 0 after 

reset.
• [15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation 

is in progress. Read-only register.
• [14]: Data cache flush pending (DP). This bit is set when a data cache flush operation 

is in progress.  Read-only register.
• [13:12]: Instruction cache tag error counter (ITE) - This field is incremented every time an 

instruction cache tag parity error is detected. The counter saturates at 3 (‘11’) and shall be cleared 
in software so that new events can later be registered.

• [11:10]: Instruction cache data error counter (IDE) - This field is incremented each time an 
instruction cache data sub-block parity error is detected. The counter saturates at 3 (‘11’) and shall 
be cleared in software so that new events can later be registered.

• [9:8]: Data cache tag error counter (DTE) - This field is incremented every time a data cache tag 
parity error is detected.

• [7:6]: Data cache data error counter (DDE) - This field is incremented each time an data cache 
data sub-block parity error is detected.

• [5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when 
an asynchronous interrupt is taken.

• [4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be 
frozen when an asynchronous interrupt is taken.
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• [3:2]: Data Cache state (DCS) - Defines the current data cache state according to the following: 
X0= disabled, 01 = frozen, 11 = enabled. Set to ‘00’ at reset.

• [1:0]: Instruction Cache state (ICS) - Defines the current instruction cache state according to the 
following: X0= disabled, 01 = frozen, 11 = enabled. Set to ‘00’ at reset.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous 
interrupt is taken. This can be beneficial in real-time system to allow a more accurate 
calculation of worst-case execution time for a code segment. The execution of the interrupt 
handler will not evict any cache lines and when control is returned to the interrupted task, the 
cache state is identical to what it was before the interrupt.

If a cache has been frozen by an interrupt, it can only be enabled again by enabling it in the 
CCR. This is typically done at the end of the interrupt handler before control is returned to 
the interrupted task.
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5 Memory management unit

A memory management unit (MMU) compatible with the SPARC V8 reference MMU can 
optionally be configured. For details on operation, see the SPARC V8 manual.

5.1 ASI mappings

When the MMU is used, the following ASI mappings are made:

Table 6: MMU ASI usage

ASI Usage

0x5 Flush instruction cache

0x6 Flush data cache

0x8, 0x9, 0xA, 0xB Normal cached access (replace if cacheable)

0xC Instruction cache tags

0xD Instruction cache data

0xE Data cache tags

0xF Data cache data

0x10 Flush page

0x13 Flush context

0x19 MMU registers

0x1C MMU bypass

 

5.2 Caches

When the MMU is disabled, the caches operate as normal with physical address mapping. 
When the MMU is enabled, the caches tags store the virtual address and also include an 8-
bit context field. AHB cache snooping is not available when the MMU is enabled.

5.3 MMU registers

The following MMU registers are implemented:

Table 7: MMU registers (ASI = 0x19)

Address Register

0x000 MMU control register

0x100 Context pointer register

0x200 Context register

0x300 Fault status register

0x400 Fault address register

The definition of the registers can be found in the SPARC V8 manual.
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5.4 Translation look-aside buffer (TLB)

The MMU can be configured to use a shared TLB, or separate TLB for instructions and data. 
The number of TLB entries can be set to 2 - 32 in the configuration record. The organisation 
of the TLB and number of entries is not visible to the software and does thus not require any 
modification to the operating system.
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6 AMBA on-chip buses

6.1 Overview

Two on-chip buses are provided: AMBA AHB and APB. The APB bus is used to access on-
chip registers in the peripheral functions, while the AHB bus is used for high-speed data 
transfers. The specification for the AMBA bus can be downloaded from ARM, at: 
www.arm.com. The AHB/APB bus controllers can be customised through the TARGET 
package. Additional (user defined) AHB/APB peripherals should be added in the MCORE 
module (see “Model hierarchy” on page 82). 

The AHB/APB busses follow the AMBA specification v. 2.0 with the following notes:
- The AHB masters support AHB retry/split and error answers
- The memory controller AHB slave never uses retry/split even on very long wait states
- APB PREADY signal is not part of the AMBA v. 2.0 specification and therefore not 
supported.

6.2 AHB bus

LEON uses the AMBA-2.0 AHB bus to connect the processor cache controllers to the 
memory controller and other (optional) high-speed units. In the default configuration, the 
processor is the only master on the bus, while two slaves are provided: the memory controller 
and the APB bridge. Table 8 below shows the default address allocation.

Table 8: Default AHB address allocation

Address range Size Mapping Module

0x00000000 - 0x1FFFFFFF
0x20000000 - 0x3FFFFFFF
0x40000000 - 0x7FFFFFFF

512 M
512 M

1 G

Prom
Memory bus I/O
SRAM and/or SDRAM

Memory controller

0x80000000 - 0x8FFFFFFF 256 M On-chip registers APB bridge

0x90000000 - 0x9FFFFFFF 256 M Debug support unit DSU

An attempt to access a non-existing device will generate an AHB error response.

6.3 APB bus

The APB bridge is connected to the AHB bus as a slave and acts as the (only) master on the 
APB bus. Most on-chip peripherals are accessed through the APB bus. The address mapping 
of the APB bus can be seen in table 9. Optionally the implementation of a pipeline stage 
between the AHB slave port and APB master port can be selected, in case it is necessary to 
reduce the length of the critical path in this component.

6.4 AHB transfers generated by the processor

The processor is connected to the AHB bus through the instruction and data cache 
controllers. Access conflicts between the two cache controllers are resolved locally and only 
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one AHB master interface is connected to the AHB bus. The processor will perform burst 
transfers to fetch instruction cache lines or reading/writing data as results of double load/
store instructions. Byte, half-word and word load/store instructions will perform single (non-
sequential accesses. Locked transfers are only performed on LDST and SWAP instructions. 
Double load/store transfers are however also guaranteed to be atomic since the arbiter will 
not re-arbitrate the bus during burst transfers.
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7 On-chip peripherals

7.1 On-chip registers

A number of system support functions are provided directly on-chip. The functions are 
controlled through registers mapped APB bus according to the following table:

Table 9: On-chip registers

Address Register Address

0x80000000 Memory configuration register 1 0x800000B0 Secondary interrupt mask register

0x80000004 Memory configuration register 2 0x800000B4 Secondary interrupt pending register

0x80000008 Memory configuration register 3 0x800000B8 Secondary interrupt status register

0x8000000C AHB Failing address register 0x800000B8 Secondary interrupt clear register

0x80000010 AHB status register

0x80000014 Cache control register 0x800000C4 DSU UART status register

0x80000018 Power-down register 0x800000C8 DSU UART control register

0x8000001C Write protection register 1 0x800000CC DSU UART scaler register

0x80000020 Write protection register 2 0x800000D0 Write protect start address 1

0x80000024 LEON configuration register 0x800000D4 Write protect start end 1

0x80000040 Timer 1 counter register 0x800000D8 Write protect start address 2

0x80000044 Timer 1 reload register 0x800000DC Write protect start end 2

0x80000048 Timer 1 control register 0x800000E0 Interrupt map register 0

0x8000004C Watchdog register 0x800000E4 Interrupt map register 1

0x80000050 Timer 2 counter register

0x80000054 Timer 2 reload register

0x80000058 Timer 2 control register

0x80000060 Prescaler counter register

0x80000064 Prescaler reload register

0x80000070 Uart 1 data register

0x80000074 Uart 1 status register

0x80000078 Uart 1 control register

0x8000007C Uart 1 scaler register

0x80000080 Uart 2 data register

0x80000084 Uart 2 status register

0x80000088 Uart 2 control register

0x8000008C Uart 2 scaler register

0x80000090 Interrupt mask and priority register

0x80000094 Interrupt pending register

0x80000098 Interrupt force register

0x8000009C Interrupt clear register

0x800000A0 I/O port input/output register

0x800000A4 I/O port direction register

0x800000A8 I/O port interrupt config. register 1

0x800000AC I/O port interrupt config. register 2
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7.2 Interrupt controller

The LEON interrupt controller is used to prioritize and propagate interrupt requests from 
internal or external devices to the integer unit. In total 15 interrupts are handled, divided on 
two priority levels. Figure 7 shows a block diagram of the interrupt controller.

Figure 7: Interrupt controller block diagram
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7.2.1 Operation

When an interrupt is generated, the corresponding bit is set in the interrupt pending register. 
The pending bits are ANDed with the interrupt mask register and then forwarded to the 
priority selector. Each interrupt can be assigned to one of two levels as programmed in the 
interrupt level register. Level 1 has higher priority than level 0. The interrupts are prioritised 
within each level, with interrupt 15 having the highest priority and interrupt 1 the lowest. The 
highest interrupt from level 1 will be forwarded to the IU - if no unmasked pending interrupt 
exists on level 1, then the highest unmasked interrupt from level 0 will be forwarded. When 
the IU acknowledges the interrupt, the corresponding pending bit will automatically be 
cleared. 

Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the IU 
acknowledgement will clear the force bit rather than the pending bit.

Note that interrupt 15 cannot be maskable by the integer unit and should be used with care - 
most operating system do safely handle this interrupt.

7.2.2 Interrupt (re)map registers

The interrupt controller can optionally be implemented (as an alternative to the two-interrupt 
levels scheme) with functionality to allow dynamic remapping between bus interrupt lines 
and processor interrupt lines. If the design includes this functionality then switch-logic will 
be placed on the incoming interrupt vector from the AMBA bus before the IRQ pending 
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register as shown in Figure 7. Two 32-bit Interrupt map registers will be available starting at 
offset 0x800000E0.

The interrupt map registers contain one field for each bus interrupt line in the system. The 
value within this field determines to which LEON processor interrupt line the bus interrupt 
line is connected. In case several bus interrupt lines are mapped to the same processor 
interrupt line (several fields in the Interrupt map registers have the same value) then the bus 
interrupt lines will be OR:ed together.

Note that if bus interrupt line X is remapped to processor interrupt line Y then bit Y of the 
pending register will be set when a peripheral asserts interrupt X. Remapping interrupt lines 
via the Interrupt map registers has the same effect as changing the interrupt assignments in 
the RTL code.

7.2.3 Reset values

After reset, the interrupt mask register is set to all zeros while the remaining control registers 
are undefined. In case the Interrupt map registers are present then their reset value will 
correspond to a 1:1 mapping between bus interrupt and processor interrupts.

7.2.4 Interrupt assignment

Table 10 shows the assignment of interrupt sources to the bus interrupt lines.

Table 10: Interrupt assignments

Interrupt Source

15 Parallel I/O[7]

14 PCI (optional)

13 Parallel I/O[6]

12 Parallel I/O[5]

11 DSU trace buffer

10 Parallel I/O[4]

9 Timer 2

8 Timer 1

7 Parallel I/O[3]

6 Parallel I/O[2]

5 Parallel I/O[1]

4 Parallel I/O[0]

3 UART 1

2 UART 2

1 AHB error

7.2.5 Control registers

The operation of the interrupt controller is programmed through the following registers:
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Figure 8: Interrupt mask and priority register

0115161731

IMASK[15:1]ILEVEL[15:1] RR

Field Definitions:

• [31:17]: Interrupt level (ILEVEL[15:1]) - indicates whether an interrupt belongs to priority level 
1 (ILEVEL[n]=1) or level 0 (ILEVEL[n]=0).

• [15:1]: Interrupt mask (IMASK[15:1]) - indicates whether an interrupt is masked (IMASK[n]=0) 
or enabled (IMASK[n]=1). All mask bits are 0 after reset.

• [16], [0]: Reserved

Figure 9: Interrupt pending register

01151631

IPEND[15:1]RESERVED R

Field Definitions:

• [15:1]: Interrupt pending (IPEND[15:1]) - indicates whether an interrupt is pending 
(IPEND[n]=1).

• [31:16], [0]: Reserved

Figure 10: Interrupt force register

01151631

IFORCE[15:1]RESERVED R

Field Definitions:

• [15:1]: Interrupt force (IFORCE[15:1]) - indicates whether an interrupt is being forced 
(IFORCE[n]=1).

• [31:16], [0]: Reserved
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Figure 11: Interrupt clear register

01151631

ICLEAR[15:1]RESERVED R

Field Definitions:

• [15:1]: Interrupt clear (ICLEAR[15:1]) - if written with a ‘1’, will clear the corresponding bit(s) 
in the interrupt pending register. A read returns zero.

• [31:16], [0]: Reserved

Figure 12: Interrupt map register 0

031               28 27              24 23              20  19                   16  15                12  11                  8    7                  4   3

RESERVED  IRQMAP[1] ..IRQMAP[2] . ..IRQMAP[3].. .. .. . IRQMAP[4] .. IRQMAP[5] .. .. IRQMAP[6] .. IRQMAP[7]

Field Definitions:

• [31:28]: Reserved
• [27:24]: Interrupt map for bus IRQ 1 - Bus interrupt 1 will be mapped to processor interrupt line 

IRQMAP[1].
• [23:20]: Interrupt map for bus IRQ 2- Bus interrupt 2 will be mapped to processor interrupt line 

IRQMAP[2].
• [19:16]: Interrupt map for bus IRQ 3 - Bus interrupt 3 will be mapped to processor interrupt line 

IRQMAP[3].
• [15:12]: Interrupt map for bus IRQ 4 - Bus interrupt 4 will be mapped to processor interrupt line 

IRQMAP[4].
• [11:8]: Interrupt map for bus IRQ 5 - Bus interrupt 5 will be mapped to processor interrupt line 

IRQMAP[5].
• [7:4]: Interrupt map for bus IRQ 6 - Bus interrupt 6 will be mapped to processor interrupt line 

IRQMAP[6].
• [3:0]: Interrupt map for bus IRQ 7 - Bus interrupt 7 will be mapped to processor interrupt line 

IRQMAP[7].
• Reset values are IRQMAP[i] = i meaning that, after reset, the interrupt map functionality has no 

visible effect
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Figure 13: Interrupt map register 1

031               28 27              24 23              20  19                   16  15                12  11                  8    7                  4   3

IRQMAP[8] . IRQMAP[9] .IRQMAP[10] . ..IRQMAP[11].. . IRQMAP[12] .. IRQMAP[13] .. IRQMAP[14] . IRQMAP[15]

Field Definitions:

• [31:28]: Reserved
• [27:24]: Interrupt map for bus IRQ 8- Bus interrupt 8 will be mapped to processor interrupt line 

IRQMAP[8].
• [23:20]: Interrupt map for bus IRQ 9 - Bus interrupt 9 will be mapped to processor interrupt line 

IRQMAP[9].
• [19:16]: Interrupt map for bus IRQ 10- Bus interrupt 10 will be mapped to processor interrupt line 

IRQMAP[10].
• [15:12]: Interrupt map for bus IRQ 11- Bus interrupt 11 will be mapped to processor interrupt line 

IRQMAP[11].
• [11:8]: Interrupt map for bus IRQ 12 - Bus interrupt 12 will be mapped to processor interrupt line 

IRQMAP[12].
• [7:4]: Interrupt map for bus IRQ 13 - Bus interrupt 13 will be mapped to processor interrupt line 

IRQMAP[13].
• [3:0]: Interrupt map for bus IRQ 14 - Bus interrupt 14 will be mapped to processor interrupt line 

IRQMAP[14].
• [3:0]: Interrupt map for bus IRQ 15 - Bus interrupt 15 will be mapped to processor interrupt line 

IRQMAP[15].
• Reset values are IRQMAP[i] = i meaning that, after reset, the interrupt map functionality has no 

visible effect
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7.3 Secondary interrupt controller

The (optional) secondary interrupt controller is used add up to 32 additional interrupts, to be 
used by on-chip units in system-on-chip designs. Figure 7 shows a block diagram of the 
interrupt controller.

Figure 14: Secondary interrupt controller block diagram
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7.3.1 Operation

The incoming interrupt signals are filtered according to the setting in the configuration 
record. The filtering condition can be one of four: active low, active high, negative edge-
triggered and positive edge-triggered. When the condition is fulfilled, the corresponding bit 
is set in the interrupt pending register. The pending bits are ANDed with the interrupt mask 
register and then forwarded to the priority selector. If at least one unmasked pending interrupt 
exists, the interrupt output will be driven, generating interrupt 10 (by default). The highest 
unmasked pending interrupt can be read from the interrupt status register (see below).

Interrupts are not cleared automatically upon a taken interrupt - the interrupt handler must 
reset the pending bit by writing a ‘1’ to the corresponding bit in the interrupt clear register. 
It must then also clear interrupt 10 in the primary interrupt controller. Testing of interrupts 
can be done by writing directly to the interrupt pending registers. Bits written with ‘1’ will 
be set while bits written with ‘0’ will keep their previous value.

Note that not all 32 interrupts have to be implemented, how many are actually used depends 
on the configuration. Unused interrupts are ignored and the corresponding register bits are 
not generated. Mapping of interrupts to the secondary interrupt controller is done by editing 
mcore.vhd. See the configuration section on how to enable the controller and how to 
configure the interrupt filters.

After reset, the interrupt mask register is set to all zeros while the remaining control registers 
are undefined.
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7.3.2 Control registers

The operation of the secondary interrupt controller is programmed through the following 
registers:

Figure 15: Secondary interrupt mask register

031

IMASK[31:0]

• [31:0]: Interrupt mask - indicates whether an interrupt is masked (IMASK[n]=0) or enabled 
(IMASK[n]=1). All bits are 0 after reset.

Figure 16: Secondary interrupt pending register

031

IPEND[31:0]

• [31:0]: Interrupt pending - indicates whether an interrupt is pending (IPEND[n]=1). All bits are 0 
after reset.

Figure 17: Secondary interrupt status register

04531

IRL[4:0]RESERVED IP

• [4:0]: Interrupt request level - indicates the highest unmasked pending interrupt.
• [5]: Interrupt pending - if set, then IRL is valid. If cleared, no unmasked interrupt is pending.

Figure 18: Secondary interrupt clear register

031

ICLEAR[31:0]

• [31:0]: Interrupt clear - if written with a ‘1’, will clear the corresponding bit(s) in the interrupt 
pending register.
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7.4 Timer unit

The timer unit implements two 32-bit timers, one 32-bit watchdog and one 10-bit shared 
prescaler (figure 19). 

Figure 19: Timer unit block diagram
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7.4.1 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When 
the prescaler underflows, it is reloaded from the prescaler reload register and a timer tick is 
generated for the two timers and watchdog. The effective division rate is therefore equal to 
prescaler reload register value + 1.

The operation of the timers is controlled through the timer control register. A timer is enabled 
by setting the enable bit in the control register. The timer value is then decremented each time 
the prescaler generates a timer tick. When a timer underflows, it will automatically be 
reloaded with the value of the timer reload register if the reload bit is set, otherwise it will 
stop (at 0xffffffff) and reset the enable bit. An interrupt will be generated after each 
underflow. 

The timer can be reloaded with the value in the reload register at any time by writing a ‘one’ 
to the load bit in the control register.

The watchdog operates similar to the timers, with the difference that it is always enabled and 
upon underflow asserts the external signal WDOG. This signal can be used to generate a 
system reset.

To minimise complexity, the two timers and watchdog share the same decrementer. This 
means that the minimum allowed prescaler division factor is 4 (reload register = 3). Writes 
of values less than three to the prescaler reload or counter register will be ignored.
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7.4.2 Registers

Figures 20 to 24 shows the layout of the timer unit registers.

Figure 20: Timer 1/2 and Watchdog counter registers

031

TIMER/WATCHDOG VALUE

The watchdog counter register contains all 1s after reset (0xFFFFFFFF)

Figure 21: Timer 1/2 reload registers

031

TIMER RELOAD VALUE

Figure 22: Timer 1/2 control registers

012331

LD RL ENRESERVED

• [2]: Load counter (LD) - when written with ‘one’, will load the timer reload register into the timer 
counter register. Always reads as a ‘zero’.

• [1]: Reload counter (RL) - if RL is set, then the counter will automatically be reloaded with the 
reload value after each underflow.

• [0]: Enable (EN) - enables the timer when set. Value 0 (timer disabled) after reset

Figure 23: Prescaler reload register

091031

RESERVED RELOAD VALUE
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Write of values <3 to the prescaler reload register will be ignored. After reset it is set to 3 
when boot from RAM is selected, otherwise the reset value is (sysclk/1000000 -1)

Figure 24: Prescaler counter register

091031

RESERVED COUNTER VALUE

.

Write of values <3 to the prescaler counter register will be ignored. After reset it is set to 3 
when boot from RAM is selected, otherwise the reset value is (sysclk/1000000 -1).

7.5 UARTs

Two identical UARTs are provided for serial communications. The UARTs support data 
frames with 8 data bits, one optional parity bit and one stop bit. To generate the bit-rate, each 
UART has a programmable 12-bits clock divider. Hardware flow-control is supported 
through the RTSN/CTSN hand-shake signals. Figure 25 shows a block diagram of a UART.

Figure 25: UART block diagram
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7.5.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. When ready to 
transmit, data is transferred from the transmitter holding register to the transmitter shift 
register and converted to a serial stream on the transmitter serial output pin (TXD). It 
automatically sends a start bit followed by eight data bits, an optional parity bit, and one stop 
bits (figure 26). The least significant bit of the data is sent first
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Figure 26: UART data frames

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:

Following the transmission of the stop bit, if a new character is not available in the 
transmitter holding register, the transmitter serial data output remains high and the 
transmitter shift register empty bit (TSRE) will be set in the UART control register. 
Transmission resumes and the TSRE is cleared when a new character is loaded in the 
transmitter holding register. If the transmitter is disabled, it will continue operating until the 
character currently being transmitted is completely sent out. The transmitter holding register 
cannot be loaded when the transmitter is disabled.

If flow control is enabled, the CTSN input must be low in order for the character to be 
transmitted. If it is deasserted in the middle of a transmission, the character in the shift 
register is transmitted and the transmitter serial output then remains inactive until CTSN is 
asserted again. If the CTSN is connected to a receivers RTSN, overrun can effectively be 
prevented.

7.5.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the USART 
control register. The receiver looks for a high to low transition of a start bit on the receiver 
serial data input pin. If a transition is detected, the state of the serial input is sampled a half 
bit clocks later. If the serial input is sampled high the start bit is invalid and the search for a 
valid start bit continues. If the serial input is still low, a valid start bit is assumed and the 
receiver continues to sample the serial input at one bit time intervals (at the theoretical centre 
of the bit) until the proper number of data bits and the parity bit have been assembled and 
one stop bit has been detected. The serial input is shifted through an 8-bit shift register where 
all bits have to have the same value before the new value is taken into account, effectively 
forming a low-pass filter with a cut-off frequency of 1/8 system clock.

During reception, the least significant bit is received first. The data is then transferred to the 
receiver holding register (RHR) and the data ready (DR) bit is set in the USART status 
register. The parity, framing and overrun error bits are set at the received byte boundary, at 
the same time as the receiver ready bit is set. If both receiver holding and shift registers 
contain an un-read character when a new start bit is detected, then the character held in the 
receiver shift register will be lost and the overrun bit will be set in the UART status register. 
If flow control is enabled, then the RTSN will be negated (high) when a valid start bit is 
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detected and the receiver holding register contains an un-read character. When the holding 
register is read, the RTSN will automatically be reasserted again.

7.5.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The 
scaler is clocked by the system clock and generates a UART tick each time it underflows. 
The scaler is reloaded with the value of the UART scaler reload register after each underflow. 
The resulting UART tick frequency should be 8 times the desired baud-rate. If the EC bit is 
set, the scaler is bypassed and the UART will be clocked directly by the PIO[3] input rather 
than the system clock. In this case, the frequency of PIO[3] must be less than half the 
frequency of the system clock.

7.5.4 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this 
mode, the transmitter output is internally connected to the receiver input and the RTSN is 
connected to the CTSN. It is then possible to perform loop back tests to verify operation of 
receiver, transmitter and associated software routines. In this mode, the outputs remain in the 
inactive state, in order to avoid sending out data.

7.5.5 Interrupt generation

The UART will generate an interrupt under the following conditions: when the transmitter is 
enabled, the transmitter interrupt is enabled and the transmitter holding register moves from 
full to empty; when the receiver is enabled, the receiver interrupt is enabled and the receiver 
holding register moves from empty to full; when the receiver is enabled, the receiver 
interrupt is enabled and a character with either parity, framing or overrun error is received.

7.5.6 UART registers

Figure 27: UART data register

07831

RESERVED DATA

• [7:0] : Receiver holding register (read access)
•

Figure 28: UART control register

0123456731

RESERVED RETERITIPSPEFLLB

8

EC

[7:0] : Transmitter holding register (write access)

• 0: Receiver enable (RE) - if set, enables the receiver. Value 0 after reset.
• 1: Transmitter enable (TE) - if set, enables the transmitter. Value 0 after reset.
• 2: Receiver interrupt enable (RI) - if set, enables generation of receiver interrupt.
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• 3: Transmitter interrupt enable (TI) - if set, enables generation of transmitter interrupt.
• 4: Parity select (PS) - selects parity polarity (0 = even parity, 1 = odd parity)
• 5: Parity enable (PE) - if set, enables parity generation and checking.
• 6: Flow control (FL) - if set, enables flow control using CTS/RTS. Value 0 after reset.
• 7: Loop back (LB) - if set, loop back mode will be enabled.
• 8: External Clock (EC) - if set, the scaler is bypassed and the UART will be clocked by PIO[3]. 

Value 0 after reset.

Figure 29: UART status register
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• 0: Data ready (DR) - indicates that new data is available in the receiver holding register. Value 0 
after reset.

• 1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Value 
1after reset.

• 2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty. 
Value 1after reset.

• 3: Break received (BR) - indicates that a BREAK has been received; this bit is also writable to 
trigger a SW break. Value 0 after reset.

• 4: Overrun (OV) - indicates that one or more character have been lost due to overrun. Value 0 after 
reset.

• 5: Parity error (PE) - indicates that a parity error was detected. Value 0 after reset.
• 6: Framing error (FE) - indicates that a framing error was detected. Value 0 after reset.

Figure 30: UART scaler reload register

0111231

RESERVED SCALER RELOAD VALUE

When the “memory” boot option is selected, the reset value is not defined; otherwise the value can 
be equal to either the hard configuration record of the PIO[7..0] pins.

Given the SCALER RELOAD VALUE, the baud rate can be computed as:

baud-rate(bps) = Fclk / (8*Scaler_Reload_Value + 1)

7.6 Parallel I/O port

A partially bit-wise programmable 32-bit I/O port is provided on-chip. The port is split in 
two parts - the lower 16-bits are accessible via the PIO[15:0] signal while the upper 16-bits 
uses D[15:0] and can only be used when all areas (rom, ram and I/O) of the memory bus are 
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in 8- or 16-bit mode (see “8-bit and 16-bit PROM and SRAM access” on page 56). If the 
SDRAM controller is enabled, the upper 16-bits cannot be used.

The lower 16 bits of the I/O port can be individually programmed as output or input, while 
the high 16 bits of the I/O port only be configures as outputs or inputs on byte basis. Two 
registers are associated with the operation of the I/O port; the combined I/O input/output 
register, and I/O direction register. When read, the input/output register will return the 
current value of the I/O port; when written, the value will be driven on the port signals (if 
enabled as output). The direction register defines the direction for each individual port bit 
(0=input, 1=output).

Figure 31: I/O port block diagram
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Figure 32: I/O port direction register
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• IODIRn - I/O port direction. The value of IODIR[15:0] defines the direction of I/O ports 15 - 0. 
If bit n is set the corresponding I/O port becomes an output, otherwise it is an input. IODIR[16] 
controls D[15:8] while IODIR[17] controls D[7:0]. All bits are 0 after reset.

• PWMPERIOD - PWM clock period (for more details look at section 7.6.1). Value 0 after reset.
• PWMEN[7:0] - if PWMEN[n] is set, the PWM function on PIO(2*n) and PIO(2*n+1) is enabled.

The I/O ports can also be used as interrupt inputs from external devices. A total of eight 
interrupts can be generated, corresponding to interrupt levels 4, 5, 6, 7, 10, 12, 13 and 15. 
The I/O port interrupt configuration registers 1 and 2 (figure 33) define which port should 
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generate each interrupt and how it should be filtered.

Figure 33: I/O port interrupt configuration register 1 & 2
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• ISELn - I/O port select. The value of this field defines which I/O port (0 - 31) should generate 
parallel I/O port interrupt n.

• PLn - Polarity. If set, the corresponding interrupt will be active high (or edge-triggered on positive 
edge). Otherwise, it will be active low (or edge-triggered on negative edge).

• LEn - Level/edge triggered. If set, the interrupt will be edge-triggered, otherwise level sensitive.
• ENn - Enable. If set, the corresponding interrupt will be enabled, otherwise it will be masked. All 

interrupts are disabled after reset.

If PWMENn is set, the concatenated 8 bits [ENn, LEn, PLn, ISELn] = PWMDCn are used 
to control the duty cycle of the PWM function on PIO(2*n) and PIO(2*n+1).

To save pins, I/O pins are shared with other functions according to the table below:

Table 11: UART/IO port usage

I/O port Function Type Description Enabling condition

PIO[15] TXD1 Output UART1 transmitter data UART1 transmitter enabled

PIO[14] RXD1 Input UART1 receiver data -

PIO[13] RTS1 Output UART1 request-to-send UART1 flow-control enabled

PIO[12] CTS1 Input UART1 clear-to-send -

PIO[11] TXD2 Output UART2 transmitter data UART2 transmitter enabled

PIO[10] RXD2 Input UART2 receiver data -

PIO[9] RTS2 Output UART2 request-to-send UART2 flow-control enabled

PIO[8] CTS2 Input UART2 clear-to-send -

PIO[4] Boot select Input Internal or external boot prom -

PIO[3] UART clock Input Use as alternative UART clock -

PIO[1:0] Prom width Input Defines prom width at boot time -

7.6.1 PWM functionality

The 16 dedicated PIO pins can be used as eight PWM outputs. When the IO port has been 
implemented to support the PWM functionality the core will implement PWMs so that each 
PWM unit (i = 0..7) can be enabled separately with a configuration bit (bits 31:23 in the 
direction register) and provides complementary output on pins PIO(2*i) and PIO(2*i+1).

The PWM clock is derived from a prescaler with hard configurable size (number of bits 
selectable via the tkconfig configuration tool). This clock is provided to an 8-bit periodic 
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counter whose period can be set to four times the PWMPERIOD field, located in the 
direction register.

The duty cycle of each of the PWMs can be set with the interrupt configuration registers 
(PWMDCi associated with PWMi). Note that the corresponding interrupt cannot be 
generated when the corresponding PWM is enabled.

7.7 LEON configuration register

Since LEON is synthesised from a extensively configurable VHDL model, the LEON 
configuration register (read-only) is used to indicate which options were enabled during 
synthesis. For each option present, the corresponding register bit is hardwired to ‘1’. Figure 
34 shows the layout of the register.

Figure 34: LEON configuration register
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• [30]: Debug support unit (0=disabled, 1=present)
• [29]: SDRAM controller present (0=disabled, 1=present)
• [28:26]: Number of implemented watchpoints (0 - 4)
• [25]: UMAC/SMAC instruction implemented
• [24:20]: Number of register windows. The implemented number of SPARC register windows -1.
• [19:17]: Instruction cache set size. The size (in kbytes) of each instruction cache set. Set size = 2ICSZ.
• [16:15]: Instruction cache line size.The line size (in 32-bit words) of each line. Line size = 2ILSZ.
• [14:12]: Data cache set size. The size (in kbytes) of each data cache set. Set size = 2DCSZ.
• [11:10]: Data cache line size. The line size (in 32-bit words) of each line. Line size = 2DLSZ.
• [9]: UDIV/SDIV instruction implemented
• [8]: UMUL/SMUL instruction implemented
• [6]: Memory status and failing address register present
• [5:4]: FPU type (00 = none, 01=Meiko)
• [3:2]: PCI core type (00=none, 01=InSilicon, 10=ESA, 11=other)
• [1:0]: Write protection type (00=none, 01=standard)

7.8 Power-down

The processor can be powered-down by writing (an arbitrary) value to the power-down 
register. Power-down mode will be entered on the next load or store instruction. To enter 
power-down mode immediately, a store to the power-down register should be performed 
immediately followed by a ‘dummy’ load. During power-down mode, the integer unit will 
effectively be halted. The power-down mode will be terminated (and the integer unit re-
enabled) when an unmasked interrupt with higher level than the current processor interrupt 
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level (PIL) becomes pending. All other functions and peripherals operate as nominal during 
the power-down mode. A suitable power-down routine could be:

struct pwd_reg_type { volatile int pwd; };

power_down()
{

struct pwd_reg_type *lreg = (struct pwd_reg_type *) 0x80000018;
while (1) lreg->pwd = lreg->pwd;

}

In assembly, a suitable sequence could be:

power_down:
set  0x80000000, %l3
st   %g0, [%l3 + 0x18]
ba   power_down
ld   [%l3 + 0x18], %g0

7.9 AHB status register

Any access triggering an error response on the AHB bus will be registered in two registers; 
AHB failing address register and AHB status register. The failing address register will store 
the address of the access while the AHB status register will store the access and error types. 
The registers are updated when an error occur, and the EV (error valid) is set. When the 
EV bit is set, interrupt 1 is generated to inform the processor about the error. After an error, 
the EV bit has to be reset by software.

Figure 35 shows the layout of the AHB status register.

Figure 35: AHB status register
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• [9]: EE - EDAC correctable error. Set when a correctable EDAC error is detected.
• [8]: EV - error valid. Set when an error occurred. Value 0 after reset.
• [7]: RW - Read/Write. This bit is set if the failed access was a read cycle, otherwise it is cleared.
• [6:3]: HMASTER - AHB master. This field contains the HMASTER[3:0] of the failed access.
• [2:0] HSIZE - transfer size. This field contains the HSIZE[2:0] of the failed transfer.
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8 External memory access

8.1 Memory interface

The memory bus provides a direct interface to PROM, memory mapped I/O devices, 
asynchronous static ram (SRAM) and synchronous dynamic ram (SDRAM). Chip-select 
decoding is done for two PROM banks, one I/O bank, five SRAM banks and two SDRAM 
banks. Figure 36 shows how the connection to the different device types is made.

Figure 36: Memory device interface
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8.2 Memory controller

The external memory bus is controlled by a programmable memory controller. The controller 
acts as a slave on the AHB bus. The function of the memory controller is programmed 
through memory configuration registers 1, 2 & 3 (MCR1, MCR2 & MCR3) through the APB 
bus. The memory bus supports four types of devices: prom, sram, sdram and local I/O. The 
memory bus can also be configured in 8- or 16-bit mode for applications with low memory 
and performance demands. The controller decodes a 2 Gbyte address space, divided 
according to table 12:

Table 12: Memory controller address map

Address range Size Mapping

0x00000000 - 0x1FFFFFFF 512 M Prom

0x20000000 - 0x3FFFFFFF 512M I/O 

0x40000000 -0x7FFFFFFF 1 G SRAM/SDRAM
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8.3 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM 
cycles can have up to 15 waitstates.

Figure 37: Prom read cycle
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Two PROM chip-select signals are provided, ROMSN[1:0]. ROMSN[0] is asserted when the 
lower half (0 - 0x10000000) of the PROM area as addressed while ROMSN[1] is asserted 
for the upper half (0x10000000 - 0x20000000).

8.4 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a 
additional waitstates can be inserted by de-asserting the BRDYN signal. The I/O select signal 
(IOSN) is delayed one clock to provide stable address before IOSN is asserted.

Figure 38: I/O read cycle
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8.5 SRAM access

The SRAM area can be up to 1 Gbyte, divided on up to five RAM banks. The size of banks 
1-4 (RAMSN[3:0]is programmed in the RAM bank-size field (MCR2[12:9]) and can be set 
in binary steps from 8 kbyte to 256 Mbyte. The fifth bank (RAMSN[4]) decodes the upper 
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512 Mbyte. A read access to SRAM consists of two data cycles and between zero and three 
waitstates. Accesses to RAMSN[4] can further be stretched by de-asserting BRDYN until 
the data is available. On non-consecutive accesses, a turn-over cycle is added after a read 
cycle to prevent bus contention due to slow turn-off time of memories or I/O devices. During 
the turn-over cycle the address is not guaranteed to remain stable. Figure 39 shows the basic 
read cycle waveform (zero waitstate).

data1 data2
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turn-over

A1

CLK

A

RAMSN

D

RAMOEN

Figure 39: Static ram read cycle (0-waitstate)

For read accesses to RAMSN[4:0], a separate output enable signal (RAMOEN[n]) is 
provided for each RAM bank and only asserted when that bank is selected. A write access is 
similar to the read access but takes a minimum of three cycles:

Figure 40: Static ram write cycle
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Through an (optional) feed-back loop from the write strobes, the data bus is guaranteed to be 
driven until the write strobes are de-asserted. Each byte lane has an individual write strobe 
to allow efficient byte and half-word writes. If the memory uses a common write strobe for 
the full 16- or 32-bit data, the read-modify-write bit MCR2 should be set to enable read-
modify-write cycles for sub-word writes.

8.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be 
performed in burst mode. Burst transfers will be generated when the memory controller is 
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accessed using an AHB burst request. These includes instruction cache-line fills, double 
loads and double stores. The timing of a burst cycle is identical to the programmed basic 
cycle with the exception that during read cycles, the turn-over cycle will only occurs after 
the last transfer. 

8.7 8-bit and 16-bit PROM and SRAM access

To support applications with low memory and performance requirements efficiently, it is not 
necessary to always have full 32-bit memory banks. The SRAM and PROM areas can be 
individually configured for 8- or 16-bit operation by programming the ROM and RAM size 
fields in the memory configuration registers. Since read access to memory is always done on 
32-bit word basis, read access to 8-bit memory will be transformed in a burst of four read 
cycles while access to 16-bit memory will generate a burst of two 16-bits reads. During 
writes, only the necessary bytes will be writen. Figure 41 shows an interface example with 
8-bit PROM and 8-bit SRAM.

Figure 41: 8-bit memory interface example
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 Figure 42 shows an example of a 16-bit memory interface.
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Figure 42: 16-bit memory interface example
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8.8 8- and 16-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8- or 16-bits mode. 
However, the I/O device will NOT be accessed by multiple 8/16 bits accesses as the memory 
areas, but only with one single access just as in 32-bit mode. To accesses an I/O device on a 
16-bit bus, LDUH/STH instructions should be used while LDUB/STB should be used with 
an 8-bit bus.

8.9 SDRAM access

8.9.1 General

Synchronous dynamic RAM (SDRAM) access is supported to two banks of PC100/PC133 
compatible devices. The controller supports 64M, 256M and 512M device with 8 - 12 
column-address bits, up to 13 row-address bits, and 4 banks. The size of each of the two 
banks can be programmed in binary steps between 4 Mbyte and 512 Mbyte. The operation 
of the SDRAM controller is controlled through MCFG2 and MCFG3 (see below). Note that 
only 32-bit data bus width is supported for SDRAM banks.

8.9.2 Address mapping

The two SDRAM banks can be mapped starting at address 0x40000000 or 0x60000000. 
When the SDRAM enable bit is set in MCFG2, the controller is enabled and mapped at 
0x60000000 as long as the SRAM disable bit is not set. If the SRAM disable bit is set, all 
access to SRAM is disabled and the SDRAM banks are mapped starting at 0x40000000.
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8.9.3 Initialisation

After reset, the controller automatically performs the SDRAM initialisation sequence of 
PRECHARGE, 2x AUTO-REFRESH and LOAD-MODE-REG on both banks 
simultaneously. The controller programs the SDRAM to use page burst on read and single 
location access on write. A CAS latency of 3 is programmed by default, but can be changed 
later by software issuing additional LOAD-MODE-REG commands.

8.9.4 Configurable SDRAM timing parameters

To provide optimum access cycles for different SDRAM devices (and at different 
frequencies), some SDRAM parameters can be programmed through memory configuration 
register 2 (MCFG2) The programmable SDRAM parameters can be seen in table 13:

Table 13: SDRAM programmable timing parameters

Function Parameter range unit

CAS latency, RAS/CAS delay tCAS, tRCD 2 - 3 clocks

Precharge to activate tRP 2 - 3 clocks

Auto-refresh command period tRFC 3 - 11 clocks

Auto-refresh interval 10 - 32768 clocks

Remaining SDRAM timing parameters are according the PC100/PC133 specification.

8.9.5 Refresh

The SDRAM controller contains a refresh function that periodically issues an AUTO-
REFRESH command to both SDRAM banks. The period between the commands (in clock 
periods) is programmed in the refresh counter reload field in the MCFG3 register. Depending 
on SDRAM type, the required period is typically 7.8 or 15.6 s (corresponding to 780 or 
1560 clocks at 100 MHz). The generated refresh period is calculated as (reload value+1)/
sysclk. The refresh function is enabled by setting bit 31 in MCFG2.

8.9.6 SDRAM commands

The controller can issue three SDRAM commands by writing to the SDRAM command field 
in MCFG2: PRE-CHARGE, AUTO-REFRESH and LOAD-MODE-REG (LMR). If the 
LMR command is issued, the CAS delay as programmed in MCFG2 will be used, remaining 
fields are fixed: page read burst, single location write, sequential burst. The command field 
will be cleared after a command has been executed. Note that when changing the value of the 
CAS delay, a LOAD-MODE-REGISTER command should be generated at the same time.

8.9.7 Read cycles

A read cycle is started by performing an ACTIVATE command to the desired bank and row, 
followed by a READ command after the programmed CAS delay. A read burst is performed 
if a burst access has been requested on the AHB bus. The read cycle is terminated with a 
PRE-CHARGE command, no banks are left open between two accesses.
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8.9.8 Write cycles

Write cycles are performed similarly to read cycles, with the difference that WRITE 
commands are issued after activation. A write burst on the AHB bus will generate a burst of 
write commands without idle cycles in-between.

8.9.9 Address bus connection

The address bus of the SDRAMs should be connected to A[14:2], the bank address to 
A[16:15]. Devices with less than 13 address pins should leave the MSB part of A[14:2] 
unconnected.

8.10 Memory EDAC

The memory controller in LEON2-FT is provided with an EDAC that can correct one error 
and detect two errors in a 32-bit word. For each word, a 7-bit checksum is generated 
according to the equations below. Correction is done on-the-fly and no timing penalty occurs 
during correction. If an un-correctable error (double-error) is detected, an memory exception 
is signalled to the IU. If a correctable error occurs, no exception is generated but the event is 
registered in the failing address and memory status register and interrupt 1 is generated. The 
interrupt can then be attached to a low priority interrupt handler that scrubs the failing 
memory location. The EDAC can be used during access to PROM or RAM areas by setting 
the corresponding EDAC enable bits in the Error control register (see below). The equations 
below show how the EDAC checkbits are generated:

CB0 = D0 ^ D4 ^ D6 ^ D7 ^ D8 ^ D9 ^ D11 ^ D14 ^ D17 ^ D18 ^ D19 ^ D21 ^ D26 ^ D28 ^ D29 ^ D31

CB1 = D0 ^ D1 ^ D2 ^ D4 ^ D6 ^ D8 ^ D10 ^ D12 ^ D16 ^ D17 ^ D18 ^ D20 ^ D22 ^ D24 ^ D26 ^ D28

CB2 = D0 ^ D3 ^ D4 ^ D7 ^ D9 ^ D10 ^ D13 ^ D15 ^ D16 ^ D19 ^ D20 ^ D23 ^ D25 ^ D26 ^ D29 ^ D31

CB3 = D0 ^ D1 ^ D5 ^ D6 ^ D7 ^ D11 ^ D12 ^ D13 ^ D16 ^ D17 ^ D21 ^ D22 ^ D23 ^ D27 ^ D28 ^ D29

CB4 = D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D14 ^ D15 ^ D18 ^ D19 ^ D20 ^ D21 ^ D22 ^ D23 ^ D30 ^ D31

CB5 = D8 ^ D9 ^ D10 ^ D11 ^ D12 ^ D13 ^ D14 ^ D15 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

CB6 = D0 ^ D1 ^ D2 ^ D3 ^ D4 ^ D5 ^ D6 ^ D7 ^ D24 ^ D25 ^ D26 ^ D27 ^ D28 ^ D29 ^ D30 ^ D31

If the memory is configured in 8-bit mode, the EDAC checkbit bus (CB[7:0]) is not used but 
it is still possible to use EDAC protection. Data is always accessed as words (4 bytes at a 
time) and the corresponding checkbits are located at the address acquired by inverting the 
word address (address[27:2]) and using it as a byte address. The same chip-select is kept 
active. A word written as four bytes to addresses 0, 1, 2, 3 will have its checkbits at address 
0x0FFFFFFF, addresses 4, 5, 6, 7 at 0x0FFFFFFE and so on. All the bits up to the maximum 
banksize will be inverted while the same chip-select is always asserted. This way all the 
banksize can be supported and no memory will be unused (except for a maximum of 4 B in 
the gap between the data and checkbit area). The 8-bit mode applies to RAM and PROM 
while SDRAM always uses 32-bit accesses. Only byte-writes should be performed to ROM 
with EDAC enabled. In this case, only the corresponding byte will be written.

The operation of the EDAC can be tested trough the Error control register (see below). If the 
WB (write bypass) bit is set, the value in the TCB field will replace the normal checkbits 
during memory write cycles. If the RB (read bypass) is set, the memory checkbits of the 
loaded data will be stored in the TCB field during memory read cycles. NOTE: when the 
EDAC is enabled, the RMW bit in memory configuration register 2 must be set.
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8.11 Memory configuration register 1 (MCFG1)

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

I/O enable

Prom write enable
Prom width

Figure 43: Memory configuration register 1
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• [3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”=0, 
“0001”=2, “0010”=4, ... “1111”=30).

• [7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles 
(“0000”=0, “0001”=2, “0010”=4, ,... “1111”=30).

• [9:8]: Prom width. Defines the data width of the prom area (“00”=8, “01”=16, “10”=32).
• [10]: Reserved
• [11]: Prom write enable. If set, enables write cycles to the prom area.
• [18:12]: Unsused.
• [19]: I/O enable. If set, the access to the memory bus I/O area are enabled.
• [23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0, 

“0001”=1, “0010”=2,..., “1111”=15).
• [25]: Bus error (BEXCN) enable.
• [26]:Bus ready (BRDYN) enable.
• [28:27]: I/O bus width. Defines the data width of the I/O area (“00”=8, “01”=16, “10”=32).
• [29]: Asynchronous bus ready (ABRDYN). If set, the BRDYN input can be asserted without 

relation to the system clock. Reset to ‘0’ at power-up.
• [30]: PROM area bus ready enable (PBRDYN). If set, a PROM access will be extended until 

BRDYN is asserted. Reset to ‘0’ at power-up.

During power-up, the prom width (bits [9:8]) are set with value on PIO[1:0] inputs. The prom 
waitstates field is set to 15 (maximum) and the external bus error and bus ready are disabled. 
All other fields are undefined.
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8.12 Memory configuration register 2 (MCFG2)

Memory configuration register 2 is used to control the timing of the SRAM and SDRAM.
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Figure 44: Memory configuration register 2
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• [1:0]: Ram read waitstates. Defines the number of waitstates during ram read cycles (“00”=0, 
“01”=1, “10”=2, “11”=3).

• [3:2]: Ram write waitstates. Defines the number of waitstates during ram write cycles (“00”=0, 
“01”=1, “10”=2, “11”=3).

• [5:4]: Ram width. Defines the data width of the ram area (“00”=8, “01”=16, “1X”= 32).
• [6]: Read-modify-write. Enable read-modify-write cycles on sub-word writes to 16- and 32-bit 

areas with common write strobe (no byte write strobe).
• [7]: Bus ready enable. If set, will enable BRDYN for RAMSN[4]
• [12:9]: Ram bank size. Defines the size of each ram bank (“0000”=8 kbyte, “0001”=16 kbyte... 

“1111”=256 Mbyte).
• [13]: SI - SRAM disable. If set together with bit 14 (SDRAM enable), the static ram access will 

be disabled.
• [14]: SE - SDRAM enable. If set, the SDRAM controller will be enabled.
• [20:19] SDRAM command. Writing a non-zero value will generate an SDRAM command: 

“01”=PRECHARGE, “10”=AUTO-REFRESH, “11”=LOAD-COMMAND-REGISTER. The 
field is reset after command has been executed.

• [22:21]: SDRAM column size. “00”=256, “01”=512, “10”=1024, “11”=4096 when bit[25:23]= 
“111”, 2048 otherwise.

• [25:23]: SDRAM banks size. Defines the banks size for SDRAM chip selects: “000”=4 Mbyte, 
“001”=8 Mbyte, “010”=16 Mbyte .... “111”=512 Mbyte.

• [26]: SDRAM CAS delay. Selects 2 or 3 cycle CAS delay (0/1). When changed, a LOAD-
COMMAND-REGISTER command must be issued at the same time. Also sets RAS/CAS delay 
(tRCD).

• [29:27]: SDRAM tRFC timing. tRFC will be equal to 3 + field-value system clocks.
• [30]: SDRAM tRP timing. tRP will be equal to 2 or 3 system clocks (0/1).
• [31]: SDRAM refresh. If set, the SDRAM refresh will be enabled.
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8.13 Memory configuration register 3 (MCFG3)

MCFG3 is contains the reload value for the SDRAM refresh counter and to control and 
monitor the memory EDAC. It also contains the configuration of the register file EDAC.

Figure 45: Memory configuration register 3
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• [31:30]: Regfile check bits (RFC) - Indicates how many checkbits are used for the register file 
(00=none, 01=1, 10=2, 11=7 (EDAC))

• [29:28]: Reserved
• [27]: Memory EDAC (ME) - Indicates if a memory EDAC is present
• [26:12]: SDRAM refresh counter reload value.
• [11]: WB - EDAC diagnostic write bypass
• [10]: RB - EDAC diagnostic read bypass
• [9]: RAM EDAC enable (RE) - Enable EDAC checking of the RAM area
• [8]: PROM EDAC enable (PE) - Enable EDAC checking of the PROM area. At reset, this bit is 

initialised with the value of PIO[2]
• [7:0]: TCB - Test checkbits. This field replaces the normal checkbits during store cycles when 

WB is set. TCB is also loaded with the memory checkbits during load cycles when RB is set.

The period between each AUTO-REFRESH command is calculated as follows:

tREFRESH = ((reload value) + 1) / SYSCLK

8.14 Write protection

8.14.1 Overview

Write protection is provided to protect the RAM area against accidental over-writing. It is 
implemented with two methods: the address/mask method as implemented in the original 
LEON2 model, and an extended version using start/end addressing. 

8.14.2 Address/mask write protection

The address/mask write protection is implemented with two block protect units capable of 
disabling or enabling write access to a binary aligned memory block in the range of 32 kbyte 
- 1 Gbyte. Each block protect unit is controlled through a control register (figure 46). The 
units operate as follows: on each write access to RAM, address bits (29:15) are xored with 
the tag field in the control register, and anded with the mask field. A write protection hit is 
generated if the result is equal to zero, and the corresponding unit is enabled in block protect 
mode (BP = 1) or if the results is not zero and the unit is enabled in segment mode (BP = 0).
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Figure 46: Write protection register 1 & 2
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• [14:0] Address mask (MASK) - this field contains the address mask
• [29:15] Address tag (TAG) - this field is compared against address(29:15)
• [30] Block protect (BP) - if set, selects block protect mode
• [31] Enable (EN) - if set, enables the write protect unit

8.14.3 Start/end address write protection

The start/end address write protect scheme contains two identical units that compare the 
AHB write address against a start and an end address. If operated in block protect mode (BP 
= 1) and the AHB write address is equal or higher than the start address and lower or equal 
to the end address, a write protect hit is generated. If operated in segment mode (BP = 0), a 
write protect hit is generated when the write address is lower than the START address, or 
higher than the END address.

Figure 47: Start/end address Write protection registers

029 131

START1 [29:2] BP 0

END1 [29:2] US SU
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END2 [29:2] US SU

00

00

00

00

• START [29:2] Contains the first address in the protected block
• END [29:2] Contains the last address in the protected block
• BP - Block protect. If set, selects block protect mode
• US - User mode. If set, write protection is enabled for user-mode accesses
• SU - Supervisor mode. If set, write protection is enabled for supervisor-mode access.

The start address is calculated as 0x40000000 + START*4. The end address is calculated as 
0x40000000 + END*4.
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8.14.4 Generation of write protection

The results from the two write protection schemes is combined together according to the 
following scheme:

• If all enabled units operate in block protect mode, then a write protect error will be 
generated if any of the enabled units signal a write protection hit.

• If at least one of the enabled units operates in segment mode, then a write protect error 
will be generated only if all units operating in segment mode signal a write protection hit.

A write protection error will result in that the AHB write cycle is ended with an AHB error 
response and the data is not written to the memory.

The ROM area can be write protected by clearing the write enable bit MCR1.

8.15 Using BRDYN

The BRDYN signal can be used to stretch access cycles to the PROM or I/O areas, and the 
RAM area decoded by RAMSN[4]. The accesses will always have at least the pre-
programmed number of waitstates as defined in memory configuration registers 1 & 2, but 
will be further stretched until BRDYN is asserted. 

If bit 29 in memory configuration register 1 is not set, then BRDYN is sampled 
synchronously on the rising edge if the system clock and should be asserted in the cycle 
preceding the last one. If bit 29 is set, the BRDYN can be asserted asynchronously with the 
system clock. In this case, the read data must be kept stable until the de-assertion of OEN/
RAMOEN.

The use of BRDYN can be enabled separately for the PROM, I/O and RAM areas.

Figure 48: BRDYN and BEXCN timing (synchronous)
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Figure 49: BRDYN and BEXCN timing (asynchronous)
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8.16 Access errors

An access error can be signalled by asserting the BEXCN signal, which is sampled together 
with the data. If the usage of BEXCN is enabled in memory configuration register 1, an error 
response will be generated on the internal AMBA bus. BEXCN can be enabled or disabled 
through memory configuration register 1, and is active for all areas (PROM, I/O an RAM).

Figure 50: Read cycle with BEXCN
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8.17 Attaching an external DRAM controller

To attach an external DRAM controller, RAMSN[4] should be used since it allows the cycle 
time to vary through the use of BRDYN. In this way, delays can be inserted as required for 
opening of banks and refresh.‘
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8.18 Lead-out cycles

Lead-out cycles are those cycles at the end of a transaction where all the control signals are 
deasserted, but the address is guaranteed to be maintained. Such Lead-out cycles are inserted 
after write transactions in all modes (PROM / IO / RAM) and after IO read. Even though they 
may be observed in other transactions as well, they are not guaranteed in PROM / RAM read 
transactions.
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9 Hardware debug support

9.1 Overview

The LEON processor includes hardware debug support to aid software debugging on target 
hardware. The support is provided through two modules: a debug support unit (DSU) and a 
debug communication link (DCL). The DSU can put the processor in debug mode, allowing 
read/write access to all processor registers and cache memories. The DSU also contains a 
trace buffer which stores executed instructions and/or data transfers on the AMBA AHB bus. 
The debug communications link implements a simple read/write protocol and uses standard 
asynchronous UART communications (RS232C).

LEON SPARC V8
Integer unit

I-Cache D-Cache

AMBA AHB

LEON processor

Debug
Support Unit

Debug
Comm. Link

AHB interface

Debug I/F

Trace
Buffer

Figure 51: Debug support unit and comm. linkDSUTX
DSURX

DSUEN
DSUBRE
DSUACT

9.2 Debug support unit

9.2.1 Overview

The debug support unit is used to control the trace buffer and the processor debug mode. The 
DSU is attached to the AHB bus as slave, occupying a 2 Mbyte address space. Through this 
address space, any AHB master can access the processor registers and the contents of the 
trace buffer. The DSU control registers can be accessed at any time, while the processor 
registers and caches can only be accessed when the processor has entered debug mode; 
optionally, access to the DSU can be restricted to only when the processor is running in 
supervisor mode. The trace buffer can be accessed only when tracing is disabled/completed. 
In debug mode, the processor pipeline is held and the processor state can be accessed by the 
DSU. Entering the debug mode can occur on the following events (also depending on the 
values of the DSU Control Register):

• executing a breakpoint instruction (ta 1)
• integer unit hardware breakpoint/watchpoint hit (trap 0xb)
• rising edge of the external break signal (DSUBRE)
• setting the break-now (BN) bit in the DSU control register
• a trap that would cause the processor to enter error mode
• occurrence of any, or a selection of traps as defined in the DSU control register
• after a single-step operation
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• DSU breakpoint hit

The debug mode can only be entered when the debug support unit is enabled through an 
external pin (DSUEN). When the debug mode is entered, the following actions are taken:

• PC and nPC are saved in temporary registers (accessible by the debug unit)
• an output signal (DSUACT) is asserted to indicate the debug state
• the timer unit is (optionally) stopped to freeze the LEON timers and watchdog

The instruction that caused the processor to enter debug mode is not executed, and the 
processor state is kept unmodified. Execution is resumed by clearing the BN bit in the DSU 
control register or by de-asserting DSUEN. The timer unit will be re-enabled and execution 
will continue from the saved PC and nPC. Debug mode can also be entered after the 
processor has entered error mode, for instance when an application has terminated and halted 
the processor. The error mode can be reset and the processor restarted at any address.

9.2.2 Trace buffer

The trace buffer consists of a circular buffer that stores executed instructions and/or AHB 
data transfers. A 30-bit counter is also provided and stored in the trace as time tag. The trace 
buffer operation is controlled through the DSU control register and the Trace buffer control 
register (see below). When the processor enters debug mode, tracing can be suspended, 
depending on the value of bit 26 of the control register. The size of the trace buffer is by 
default 128 lines (= 2 kbyte), but can be configured to 64 - 1024 lines in the VHDL model 
configuration record.

The trace buffer is 128 bits wide, the information stored is indicated in table 14 and table 15 
below:

Table 14: Trace buffer data allocation, AHB tracing mode

Bits Name Definition

127 AHB breakpoint hit Set to ‘1’ if a DSU AHB breakpoint hit occurred.

126 - Unused

125:96 Time tag The value of the time tag counter

95:92 IRL Processor interrupt request input

91:88 PIL Processor interrupt level (psr.pil)

87:80 Trap type Processor trap type (psr.tt)

79 Hwrite AHB HWRITE

78:77 Htrans AHB HTRANS

76:74 Hsize AHB HSIZE

73:71 Hburst AHB HBURST

70:67 Hmaster AHB HMASTER

66 Hmastlock AHB HMASTLOCK

65:64 Hresp AHB HRESP

63:32 Load/Store data AHB HRDATA or HWDATA

31:0 Load/Store address AHB HADDR
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Table 15: Trace buffer data allocation, Instruction tracing mode

Bits Name Definition

127 Instruction breakpoint hit Set to ‘1’ if a DSU instruction breakpoint hit occurred.

126 Multi-cycle instruction Set to ‘1’ on the second and third instance of a multi-cycle 
instruction (LDD, ST or FPOP)

125:96 Time tag The value of the time tag counter

95:64 Load/Store parameters Instruction result, Store address or Store data

63:34 Program counter Program counter (2 lsb bits removed since they are always zero)

33 Instruction trap Set to ‘1’ if traced instruction trapped

32 Processor error mode Set to ‘1’ if the traced instruction caused processor error mode

31:0 Opcode Instruction opcode

During instruction tracing, one instruction is stored per line in the trace buffer with the 
exception of multi-cycle instructions. Multi-cycle instructions are entered two or three times 
in the trace buffer. For store instructions, bits [63:32] correspond to the store address on the 
first entry and to the stored data on the second entry (and third in case of STD). Bit 126 is set 
on the second and third entry to indicate this. A double load (LDD) is entered twice in the 
trace buffer, with bits [63:32] containing the loaded data. Multiply and divide instructions are 
entered twice, but only the last entry contains the result. Bit 126 is set for the second entry. 
For FPU operation producing a double-precision result, the first entry puts the MSB 32 bits 
of the results in bit [63:32] while the second entry puts the LSB 32 bits in this field. When a 
trace is frozen, interrupt 11 is generated.

The DSU time tag counter is incremented each clock as long as the processor is running. The 
counter is stopped when the processor enters debug mode, and restarted when execution is 

Figure 52: Time tag counter
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resumed.

The trace buffer control register contains two counters that contain the next address of the 
trace buffer to be written. Since the buffer is circular, it actually points to the oldest entry in 
the buffer. The counters are automatically incremented after each stored trace entry.

Figure 53: Trace buffer control register
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• [11:0] : Instruction trace index counter
• [23:12] : AHB trace index counter
• [24] : Trace instruction enable
• [25] : Trace AHB enable
• [26] : AHB trace buffer freeze. If set, the AHB trace buffer will be frozen when the processor enters debug mode
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• [28:27] Slave filtering (SFILT) - Trace only accesses to addresses with a certain prefix (bits 31:28). 0 = trace all 
accesses, 1 = trace only accesses with prefix 0x8, 2 = trace only addresses with prefix 0xA, 3 = trace only addresses 
with prefix 0xB. (See documentation in next section)

• [31:29] Master filtering (MFILT) - Trace only accesses from AHB masters with a particular master index. 0 = trace 
accesses from all masters, X = 1..6 trace only accesses from master X, 7 = trace only accesses from master 0. (See 
documentation in next section)

When both instructions and AHB transfers are traced (‘mixed mode tracing’), the buffer is 
divided on two halves. Instructions are stored in the lower half and AHB transfers in the 
upper half of the buffer. The MSB bit of the AHB index counter is then automatically kept 
high, while the MSB of the instruction index counter is kept low. When the AF bit in the trace 
control register is set, AHB tracing is stopped when the processor is in debug mode. When 
AF is cleared, tracing continues until the AHB trace enable bits are cleared.

Note that the VHDL model configuration allows to disable the mixed-mode capability. In 
this case, only the instruction trace index counter is provided, and is used also during AHB 
tracing. Setting both TA and TI bits in the trace buffer control register is then illegal.

9.2.3 AHB trace buffer filtering

AHB trace buffer filtering reduces the amount of AHB transactions dumped into the trace 
buffer and helps debugging the access from specific masters or to specific address areas on 
the AHB bus. Filtering is controlled through the Trace buffer control register fields SFILT 
and MFILT. The filter decoding logic can be easily adapted by changing the lines after the 
comment “-- AHB trace filter comparison” in the leon/dsu.vhd VHDL code.

Please note that master and slave filtering is subtractive. An access will be traced only if it 
passes both filters. With a setting on MFILT = 2 and SFILT = 1 for example, only accesses 
from AHB master #2 to addresses starting with 0x8.. will be traced.

Programming a 0 in both fields disables the trace filtering, all AHB accesses are traced. Note 
that regardless of the trace filter settings, AHB tracing also needs to be enabled with the usual 
configuration bits (bit 0 of the DSU control register and bit 25 of the Trace buffer control 
register).

9.2.4 DSU memory map

Accesses to the DSU register interface will be inhibited, and an AMBA ERROR response 
will be generated, when the DSUEN signal is LOW.

DSU memory map can be seen in table 16 below. 

Address Register

0x90000000 DSU control register

0x90000004 Trace buffer control register

0x90000008 Time tag counter

0x90000010 AHB break address 1

0x90000014 AHB mask 1

0x90000018 AHB break address 2

Table 16: DSU address space
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The addresses of the IU/FPU registers depends on how many register windows has been 
implemented and if and FPU is present. The registers can be accessed at the following 
addresses (NWINDOWS = number of SPARC register windows; 0 <= window < 
NWINDOWS, the window containing the register we want to examine):

• %on : 0x90020000 + (((window * 64) + 32 + 4*n) mod (NWINDOWS*64))
• %ln : 0x90020000 + (((window * 64) + 64 + 4*n) mod (NWINDOWS*64))
• %in : 0x90020000 + (((window * 64) + 96 + 4*n) mod (NWINDOWS*64))
• %gn : 0x90020000 + (NWINDOWS*64) + 4*n (no FPU)
• %gn : 0x90020000 + (NWINDOWS*64) + 128 + 4*n (FPU present)
• %fn : 0x90020000 + (NWINDOWS*64) + 4*n (Meiko)
• %fn : 0x90030000 + 4*n (GRFPU)

When the MMU is present, the following MMU registers can be accessed by the DSU:

0x9000001C AHB mask 2

0x90010000 - 0x90020000 Trace buffer

..0 Trace bits 127 - 96

...4 Trace bits 95 - 64

...8 Trace bits 63 - 32

...C Trace bits 31 - 0

0x90020000 - 0x90040000 IU/FPU register file

0x90080000 - 0x90100000 IU special purpose registers

0x90080000 Y register

0x90080004 PSR register

0x90080008 WIM register

0x9008000C TBR register

0x90080010 PC register

0x90080014 NPC register

0x90080018 FSR register

0x9008001C DSU trap register

0x90080040 - 0x9008007C ASR16 - ASR31 (when implemented)

0x90100000 - 0x90140000 Instruction cache tags

0x90140000 - 0x90180000 Instruction cache data

0x90180000 - 0x901C0000 Data cache tags

0x901C0000 - 0x90200000 Data cache data

0x90300000 - 0x90340000 Instruction cache context field (MMU only)

0x90380000 - 0x903C0000 Data cache context field (MMU only)

Address Register

0x901E0000 MMU control register

0x901E0004 MMU context register

0x901E0008 MMU context table pointer register

0x901E000C MMU fault status register

Table 17: MMU registers address space

Address Register

Table 16: DSU address space
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9.2.5 DSU control register

The DSU is controlled by the DSU control register:

Figure 54: DSU control register
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• 0: Trace enable (TE). Enables the trace buffer. Value 0 after reset.
• 1: Delay counter mode (DM). In mixed tracing mode, setting this bit will cause the delay counter to decrement on AHB 

traces. If reset, the delay counter will decrement on instruction traces.
• 2: Break on trace (BT) - if set, will generate a DSU break condition on trace freeze. Value 0 after reset.
• 3: Freeze timers (FT) - if set, the scaler in the LEON timer unit will be stopped during debug mode to preserve the time 

for the software application. Value 0 after reset.
• 4: Break on error (BE) - if set, will force the processor to debug mode when the processor would have entered error 

condition (trap in trap).
• 5: Break on IU watchpoint - if set, debug mode will be forced on a IU watchpoint (trap 0xb).
• 6: Break on S/W breakpoint (BS) - if set, debug mode will be forced when an breakpoint instruction (ta 1) is executed. 

Value 0 after reset.
• 7: Break now (BN) -Force processor into debug mode. If cleared, the processor will resume execution.
• 8: Break on DSU breakpoint (BD) - if set, will force the processor to debug mode when an DSU breakpoint is hit. 

Value 0 after reset.
• 9: Break on trap (BX) - if set, will force the processor into debug mode when any trap occurs.
• 10: Break on error traps (BZ) - if set, will force the processor into debug mode on all except the following traps: 

priviledged_instruction, fpu_disabled, window_overflow, window_underflow, asynchronous_interrupt, ticc_trap.
• 11: Delay counter enable (DE) - if set, the trace buffer delay counter will decrement for each stored trace. This bit is set 

automatically when an DSU breakpoint is hit and the delay counter is not equal to zero. Value 0 after reset.
• 12: Debug mode (DM). Indicates when the processor has entered debug mode (read-only).
• 13: EB - value of the external DSUBRE signal (read-only)
• 14: EE - value of the external DSUEN signal (read-only)
• 15: Processor error mode (PE) - returns ‘1’ on read when processor is in error mode, else ‘0’. Read-only bit.
• 16: Single step (SS) - if set, the processor will execute one instruction and the return to debug mode. Value 0 after reset.
• 17: Link response (LR) - is set, the DSU communication link will send a response word after AHB transfer. Value 0 

after reset.
• 18: Debug mode response (DR) - if set, the DSU communication link will send a response word when the processor 

enters debug mode. Write only bit, it always reads 0.
• 19: Reset error mode (RE) - if set, will clear the error mode in the processor.
• 31:20 Trace buffer delay counter (DCNT). Note that the number of bits actually implemented depends on the size of the 

trace buffer.

Bits 4, 5, 7, 9, 10 during reset are initialized with the value of the DSUBRE signal feed 
through a 3 stage synchronizer.

9.2.6 DSU breakpoint registers

The DSU contains two breakpoint registers for matching either AHB addresses or executed 
processor instructions. A breakpoint hit is typically used to freeze the trace buffer, but can 
also put the processor in debug mode. Freezing can be delayed by programming the DCNT 

0x901E0010 MMU fault address register

Address Register

Table 17: MMU registers address space
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field in the DSU control register to a non-zero value. In this case, the DCNT value will be 
decremented for each additional trace until it reaches zero, after which the trace buffer is 
frozen. If the BT bit in the DSU control register is set, the DSU will force the processor into 
debug mode when the trace buffer is frozen. Note that due to pipeline delays, up to 4 
additional instruction can be executed before the processor is placed in debug mode. A mask 
register is associated with each breakpoint, allowing breaking on a block of addresses. Only 
address bits with the corresponding mask bit set to ‘1’ are compared during breakpoint 
detection. To break on executed instructions, the EX bit should be set. To break on AHB load 
or store accesses, the LD and/or ST bits should be set.

01231

LD

BADDR[31:2]
Break address reg.

0231

STBMASK[31:2]
Break mask reg.

Figure 55: DSU breakpoint registers
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• BADDR : breakpoint address (bits 31:2)
• EX : break on instruction
• BMASK : Breakpoint mask (see text)
• LD : break on data load address
• ST : beak on data store address

9.2.7 DSU trap register

The DSU trap register is a read-only register that indicates which SPARC trap type that 
caused the processor to enter debug mode. When debug mode is force by setting the BN bit 
in the DSU control register, the trap type will be 0xb (hardware watchpoint trap).

Figure 56: DSU trap register
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• [11:4] : 8-bit SPARC trap type
• 12 : Error mode (EM). Set if the trap would have cause the processor to enter error mode.

9.3 DSU communication link

9.3.1 Operation

The DSU communication link consists of a UART connected to the AHB bus as a master 
(figure 57). A simple communication protocol is supported to transmit access parameters and 
data. A link command consist of a control byte, followed by a 32-bit address, followed by 
optional write data. If the LR bit in the DSU control register is set, a response byte will be 
sent after each AHB transfer. If the LR bit is not set, a write access does not return any 
response, while a read access only returns the read data. Data is sent on 8-bit basis as shown 
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in figure 59. Through the communication link, a read or write transfer can be generated to 
any address on the AHB bus.

Figure 57: DSU communication link block diagram
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Figure 58: DSU UART data frame

Start D0 StopD6D5D4D3D2D1 D7

Figure 59: DSU Communication link commands

DSU Write Command

11 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16] Data[31:24] Data[7:0]Data[15:8]Data[23:16]Send

Receive

10 Length -1 Addr[31:24] Addr[7:0]Addr[15:8]Addr[23:16]Send

DSU Read command

Resp. byte (optional)

Receive Data[31:24] Data[7:0]Data[15:8]Data[23:16] Resp. byte (optional)

bit 7:3 = 00000

bit 1:0 = AHB HRESP

Response byte encoding

bit 2 = DMODE

A response byte can optionally be sent when the processor goes from execution mode to 
debug mode. Block transfers can be performed be setting the length field to n-1, where n
denotes the number of transferred words. For write accesses, the control byte and address is 
sent once, followed by the number of data words to be written. The address is automatically 
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incremented after each data word. For read accesses, the control byte and address is sent once 
and the corresponding number of data words is returned.

Note that any accesses by the DSU UART are always in supervisor mode (HPROT = 
“0011”).

The UART receiver is implemented with same glitch filtering as the nominal UARTs.

9.3.2 DSU UART control register

Figure 60: UART control register
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• 0: Receiver enable (RE) - if set, enables both the transmitter and receiver. Value 0 after reset.
• 1: Baud rate locked (BL) - is automatically set when the baud rate is locked. Value 0 after reset.

9.3.3 DSU UART status register

Figure 61: UART status register
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• 0: Data ready (DR) - indicates that new data has been received and not yet read-out by the AHB 
master interface. Value 0 after reset.

• 1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty. Value 
1 after reset.

• 2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty. 
Value 1after reset.

• 3: Break (BR): SW break, starting a new baud-rate acquisition.
• 4: Overrun (OV) - indicates that one or more character have been lost due to overrun. Value 0 after 

reset.
• 6: Framing error (FE) - indicates that a framing error was detected. Value 0 after reset.

9.3.4 Baud rate generation

The UART contains a 18-bit down-counting scaler to generate the desired baud-rate. The 
scaler is clocked by the system clock and generates a UART tick each time it underflows. 
The scaler is reloaded with the value of the UART scaler reload register after each underflow. 
The resulting UART tick frequency should be 8 times the desired baud-rate. 

If not programmed by software, the baud rate will be automatically be discovered. This is 
done by searching for the shortest period between two falling edges of the received data 
(corresponding to two bit periods). When three identical two-bit periods has been found, the 
corresponding scaler reload value is latched into the reload register, and the BL bit is set in 
the UART control register. If the BL bit is reset by software, the baud rate discovery process 
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is restarted. The baud-rate discovery is also restarted when a ‘break’ or framing error is 
detected by the receiver, allowing to change to baudrate from the external transmitter. For 
proper baudrate detection, the value 0x55 should be transmitted to the receiver after reset or 
after sending break.

The best scaler value for manually programming the baudrate can be calculated as follows:

scaler = (((system_clk*10)/(baudrate*8))-5)/10

Figure 62: DSU UART scaler reload register
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9.4 Common operations

9.4.1 Instruction breakpoints

Instruction breakpoints can be inserted by writing the breakpoint instruction (ta 1) to the 
desired memory address (software breakpoint) or using any of the four integer unit hardware 
breakpoints. Since cache snooping is only done on the data cache, the instruction cache must 
be flushed after the insertion or removal of software breakpoints. To minimize the influence 
on execution, it is enough to clear the corresponding instruction cache tag valid bit (which is 
accessible through the DSU). 

The two DSU hardware breakpoints should only be used to freeze the trace buffer, and not 
for software debugging since there is a 4-instruction delay from the breakpoint hit before the 
processor enters the debug mode.

9.4.2 Single stepping

By setting the SS bit and clearing the BN bit in the DSU control register, the processor will 
resume execution for one instruction and then automatically return to debug mode.

9.4.3 Alternative debug sources

It is possible to debug the processor through any available AHB master since the DSU is a 
regular AHB slave. For instance, if a PCI interface is available, all debugging features will 
be available from any other PCI master.

9.4.4 Booting from DSU

By asserting DSUEN and DSUBRE at reset time, the processor will directly enter debug 
mode without executing any instructions. The system can then be initialised from the 
communication link, and applications can be downloaded and debugged. Additionally, 
external (flash) proms for stand-alone booting can be re-programmed.
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9.5 Design limitations

The registers of a co-processor or FPU in parallel configuration (separate register file) can 
not be read by the DSU.

9.6 DSU monitor

Gaisler Research provides a DSU monitor that allows both stand-alone debugging as well as 
an interface to gdb. See www.gaisler.com for details.

9.7 External DSU signals

The DSU uses five external signals: DSUACT, DSUBRE, DSUEN, DSURX and DSUTX. 
They are used as follows:

DSUACT - DSU active (output)

This active high output is asserted when the processor is in debug mode and controlled by 
the DSU.

DSUBRE - DSU break enable

A low-to-high transition on this active high input will generate break condition and put the 
processor in debug mode. After a low-to-high transition is detected, up to four instruction 
will be executed before debug node is entered.

DSUEN - DSU enable (input)

The active high input enables the DSU unit. If de-asserted, the DSU trace buffer will continue 
to operate but the processor will not enter debug mode.

DSURX - DSU receiver (input)

This active high input provides the data to the DSU communication link receiver.

DSUTX - DSU transmitter (output)

This active high input provides the output from the DSU communication link transmitter.
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10 Signals

10.1 Memory bus

Table 18: Memory bus signals

Name Type Function Active

A[27:0] Output Memory address High

BEXCN Input Bus exception Low

BRDYN Input Bus ready strobe Low

CB[7:0] Bidir Memory EDAC checkbits High

D[31:0] Bidir Memory data High

IOSN Output Local I/O select Low

OEN Output Output enable Low

RAMOEN[4:0] Output SRAM output enable Low

RAMSN[4:0] Output SRAM chip-select Low

READ Output Read strobe High

ROMSN[1:0] Output PROM chip-select Low

RWEN[3:0] Output SRAM write enable Low

SDCASN Output SDRAM column address strobe Low

SDCLK Output SDRAM clock -

SDCKE[1:0] Output SDRAM clock enable High

SDCSN[1:0] Output SDRAM chip select Low

SDDQM[3:0] Output SDRAM data mask Low

SDRASN Output SDRAM row address strobe Low

SDWEN Output SDRAM write enable Low

WRITEN Output Write strobe Low

 signals

10.2 System interface

Table 19: System interface signals

Name Type Function Active

CLK Input System clock High

ERRORN Open-drain System error Low

PIO[15:0] Bidir Parallel I/O port High

RESETN Input System reset Low

WDOGN Open-drain Watchdog output Low

DSUACT Output DSU active High

DSUBRE Input DSU break High

DSUEN Input DSU enable High

DSURX Input DSU communication link transmission input High

DSUTX Output DSU communication link transmission output High

 signals
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10.3 Signal description

All signals are clocked on the rising edge of CLK. 

A[27:0] - Address bus (output)

These active high outputs carry the address during accesses on the memory bus. When no 
access is performed, the address of the last access is driven (also internal cycles).

BEXCN - Bus exception (input)

This active low input is sampled simultaneously with the data during accesses on the memory 
bus. If asserted, a memory error will be generated.

BRDYN - Bus ready (input)

This active low input indicates that the access to a memory mapped I/O area can be 
terminated on the next rising clock edge.

CB[7:0] - Checkbits (bi-directional)

CB[6:0] carries the EDAC checkbits, CB[7] takes the value of TB[7] in the error control 
register. The processor only drive CB[7:0] during write cycles to areas programmed to be 
EDAC protected.

CLK - Processor clock (input)

This active high input provides the main processor clock.

D[31:0] - Data bus (bi-directional)

D[31:0] carries the data during transfers on the memory bus. The processor only drives the 
bus during write cycles. During accesses to 8-bit areas, only D[31:24] are used.

DSUACT - DSU active (output)

This active high output is asserted when the processor is in debug mode and controlled by 
the DSU.

DSUBRE - DSU break enable

A low-to-high transition on this active high input will generate break condition and put the 
processor in debug mode. 

DSUEN - DSU enable (input)
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The active high input enables the DSU unit. If de-asserted, the DSU trace buffer will continue 
to operate but the processor will not enter debug mode.

DSURX - DSU receiver (input)

This active high input provides the data to the DSU communication link receiver

DSUTX - DSU transmitter (output)

This active high output provides the data from the DSU communication link transmitter.

ERRORN - Processor error (open-drain output)

This active low output is asserted when the processor has entered error state and is halted. 
This happens when traps are disabled and an synchronous (un-maskable) trap occurs.

IOSN - I/O select (output)

This active low output is the chip-select signal for the memory mapped I/O area.

OEN - Output enable (output)

This active low output is asserted during read cycles on the memory bus.

PIO[15:0] - Parallel I/O port (bi-directional)

These bi-directional signals can be used as inputs or outputs to control external devices.

RAMOEN[4:0] - RAM output enable (output)

These active low signals provide an individual output enable for each RAM bank. 

RAMSN[4:0] - RAM chip-select (output)

These active low outputs provide the chip-select signals for each RAM bank.

READ - Read cycle (output)

This active high output is asserted during read cycles on the memory bus.

RESETN - Processor reset (input)

When asserted, this active low input will reset the processor and all on-chip peripherals.

ROMSN[1:0] - PROM chip-select (output)
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These active low outputs provide the chip-select signal for the PROM area. ROMSN[0] is 
asserted when the lower half of the PROM area is accessed (0 - 0x10000000), while 
ROMSN[1] is asserted for the upper half.

RWEN [3:0] - RAM write enable (output)

These active low outputs provide individual write strobes for each byte lane. RWEN[0] 
controls D[31:24], RWEN[1] controls D[23:16], etc.

SDCLK - SDRAM clock (output)

SDRAM clock, can be configured to be identical or inverted in relation to the system clock.

SDCKE[1:0] - SDRAM clock enable (output)

Currently unused, driven permanently high.

SDCASN - SDRAM column address strobe (output)

This active low signal provides a common CAS for all SDRAM devices.

SDCSN[1:0] - SDRAM chip select (output)

These active low outputs provide the chip select signals for the two SDRAM banks.

SDDQM[3:0] - SDRAM data mask (output)

These active low outputs provide the DQM signals for both SDRAM banks.

SDRASN - SDRAM row address strobe (output)

This active low signal provides a common RAS for all SDRAM devices.

SDWEN - SDRAM write strobe (output)

This active low signal provides a common write strobe for all SDRAM devices.

WDOGN - Watchdog time-out (open-drain output)

This active low output is asserted when the watchdog times-out. 

WRITEN - Write enable (output)

This active low output provides a write strobe during write cycles on the memory bus.
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11 VHDL model architecture

11.1 Model hierarchy

The LEON VHDL model hierarchy can be seen in table 20 below. 

Table 20: LEON model hierarchy

Entity/Package File name Function

LEON leon.vhd LEON top level entity

LEON_PCI leon_pci.vhd LEON/PCI top level entity

LEON/MCORE mcore.vhd Main core

LEON/MCORE/RSTGEN rstgen.vhd Reset generator

LEON/MCORE/AHBARB ahbarb.vhd AMBA/AHB controller

LEON/MCORE/APBMST apbmst.vhd AMBA/APB controller

LEON/MCORE/MCTRL mctrl.vhd Memory controller

LEON/MCORE/MCTRL/BPROM bprom.vhd Internal boot prom

LEON/MCORE/MCTRL/SDMCTRL sdmctrl.vhd SDRAM controller

LEON/MCORE/PROC proc.vhd Processor core

LEON/MCORE/PROC/CACHE cache.vhd Cache module 

LEON/MCORE/PROC/CACHEMEM cachemem.vhd Cache ram

LEON/MCORE/PROC/CACHE/DCACHE dcache.vhd Data cache controller

LEON/MCORE/PROC/CACHE/ICACHE icache.vhd Instruction cache controller

LEON/MCORE/PROC/CACHE/ACACHE acache.vhd AHB/cache interface module

LEON/MCORE/PROC/IU iu.vhd Processor integer unit

LEON/MCORE/PROC/IU/MUL mul.vhd Multiplier state machined

LEON/MCORE/PROC/IU/DIV div.vhd radix-2 divider

LEON/MCORE/PROC/REGFILE regfil.vhd Integer unit register file

LEON/MCORE/PROC/FPU meiko.vhd Meiko FPU core (not included)

LEON/MCORE/PROC/FPU_LTH fpu_lth.vhd FPU core from Lund University

LEON/MCORE/PROC/FPU_CORE fpu_core.vhd FPU core wrapper

LEON/MCORE/PROC/FP1EU fp1eu.vhd parallel FPU interface

LEON/MCORE/IRQCTRL irqctrl.vhd Interrupt controller

LEON/MCORE/IOPORT ioport.vhd Parallel I/O port

LEON/MCORE/TIMERS timers.vhd Timers and watchdog

LEON/MCORE/UART uart.vhd UARTs

LEON/MCORE/LCONF lconf.vhd LEON configuration register

LEON/MCORE/AHBSTAT ahbstat.vhd AHB status register

LEON/MCORE/AHBMEM ahbmem.vhd AHB ram

LEON/MCORE/DSU dsu.vhd Debug support unit

LEON/MCORE/DSU_MEM dsu_mem.vhd DSU trace buffer memory

LEON/MCORE/DCOM dcom.vhd Debug comm. link controller

LEON/MCORE/DCOM/DCOM_UART dcom_uart.vhd UART for debug comm. link
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Table 21 shows the packages used in the LEON

Table 21: LEON packages

Package File name Function

TARGET target.vhd Pre-defined configurations for various targets

DEVICE device.vhd Current configuration

CONFIG config.vhd Generation of various constants for processor and caches

SPARCV8 sparcv8.vhd SPARCV8 opcode definitions

IFACE iface.vhd Type declarations for module interface signals

MACRO macro.vhd Various utility functions

AMBA amba.vhd Type definitions for the AMBA buses

AMBACOMP ambacomp.vhd AMBA component declarations

MULTLIB multlib.vhd Multiplier modules

FPULIB fpu.vhd FPU interface package

DEBUG debug.vhd Debug package with SPARC disassembler

TECH_GENERIC tech_generic.vhd Generic regfile and pad models

TECH_ATC18 tech_atc18.vhd Atmel ATC18 specific pads with Virage ram cells

TECH_ATC25 tech_atc25.vhd Atmel ATC25 specific regfile, ram and pad generators

TECH_ATC35 tech_atc35.vhd Atmel ATC35 specific regfile, ram and pad generators

TECH_FS90 tech_fs90.vhd UMC/FS90AB specific regfile, ram and pad generators

TECH_TSMC25 tech_tsmc25.vhd TSMC 0.25 um specific pads, with Artisan ram cells

TECH_UMC18 tech_umc18.vhd UMC 0.18 um specific regfile, ram and pad generators

TECH_VIRTEX tech_virtex.vhd Xilinx Virtex specific regfile and ram generators

TECH_VIRTEX2 tech_virtex2.vhd Xilinx Virtex2 specific regfile and ram generators

TECH_AXCEL tech_axcel.vhd Actel Accelerator specific regfile and ram generators

TECH_PROASIC tech_proasic.vhd Actel Proasic specific regfile and ram generators

TECH_MAP tech_map.vhd Maps mega-cells according to selected target

 model.

11.2 Model coding style

The LEON VHDL model is designed to be used for both synthesis and board-level 
simulation. It is therefore written using rather high-level VHDL constructs, mostly using 
sequential statements. Typically, each module only contains two processes, one 
combinational process describing all functionality and one process implementing registers. 
Records are used extensively to group signals according their functionality. In particular, 
signals between modules are passed in records.

The model is fully synchronous using a continuous clock and the use of multiplexers to 
enable loading of pipe-line registers. The rising edge of the clock is used for all registers and 
most on-chip rams. However, some technology-specific rams use the negative edge to 
generate write strobes or as enable signal for address and data latches.
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11.3 AMBA buses

11.3.1 AMBA AHB

The AHB bus can connect up to 16 masters and any number of slaves. The LEON processor 
core is normally connected as master 0, while the memory controller and APB bridge are 
connected at slaves 0 and 1. 

The AHB controller (AHBARB) controls the AHB bus and implements both bus decoder/
multiplexer and the bus arbiter. The arbitration scheme is fixed priority where the bus master 
with highest index has highest priority. The processor is by default put on the lowest index. 
Re-arbitration is done after each transfer, but not during burst transfers (HTRANS = SEQ) 
or locked cycles (HLOCK asserted during arbitration). 

Each AHB master is connected to the bus through two records, corresponding to the AHB 
signals as defined in the AMBA 2.0 standard:

-- AHB master inputs (HCLK and HRESETn routed separately)
   type AHB_Mst_In_Type is
      record
         HGRANT:     Std_ULogic;                         -- bus grant
         HREADY:     Std_ULogic;                         -- transfer done
         HRESP:      Std_Logic_Vector(1       downto 0); -- response type
         HRDATA:     Std_Logic_Vector(HDMAX-1 downto 0); -- read data bus

end record;

   -- AHB master outputs
   type AHB_Mst_Out_Type is
      record
         HBUSREQ:    Std_ULogic;                         -- bus request
         HLOCK:      Std_ULogic;                         -- lock request
         HTRANS:     Std_Logic_Vector(1       downto 0); -- transfer type
         HADDR:      Std_Logic_Vector(HAMAX-1 downto 0); -- address bus (byte)
         HWRITE:     Std_ULogic;                         -- read/write
         HSIZE:      Std_Logic_Vector(2       downto 0); -- transfer size
         HBURST:     Std_Logic_Vector(2       downto 0); -- burst type
         HPROT:      Std_Logic_Vector(3       downto 0); -- protection control
         HWDATA:     Std_Logic_Vector(HDMAX-1 downto 0); -- write data bus
      end record;

Each AHB slave is similarly connected through two records:

-- AHB slave inputs (HCLK and HRESETn routed separately)
   type AHB_Slv_In_Type is
      record
         HSEL:       Std_ULogic;                         -- slave select
         HADDR:      Std_Logic_Vector(HAMAX-1 downto 0); -- address bus (byte)
         HWRITE:     Std_ULogic;                         -- read/write
         HTRANS:     Std_Logic_Vector(1       downto 0); -- transfer type
         HSIZE:      Std_Logic_Vector(2       downto 0); -- transfer size
         HBURST:     Std_Logic_Vector(2       downto 0); -- burst type
         HWDATA:     Std_Logic_Vector(HDMAX-1 downto 0); -- write data bus
         HPROT:      Std_Logic_Vector(3       downto 0); -- protection control
         HREADY:     Std_ULogic;                         -- transfer done
         HMASTER:    Std_Logic_Vector(3       downto 0); -- current master
         HMASTLOCK:  Std_ULogic;                         -- locked access
      end record;

   -- AHB slave outputs
type AHB_Slv_Out_Type is
      record
         HREADY:     Std_Logic;                         -- transfer done
         HRESP:      Std_Logic_Vector(1       downto 0); -- response type
         HRDATA:     Std_Logic_Vector(HDMAX-1 downto 0); -- read data bus
         HSPLIT:     Std_Logic_Vector(15      downto 0); -- split completion
      end record;
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11.3.2 AHB cache aspects

Since no MMU is provided with LEON, the configuration record contains a table which 
indicates which addresses will be cached by the processor. By default, only the PROM and 
RAM area of the memory controller are marked as cacheable.

11.3.3 AHB protection signals

The processor drives the AHB protection signals (HPROT) as follows: the opcode/data bit is 
driven according to if an instruction fetch or a data load/store is performed, the privileged bit 
is driven when the processor is in supervisor mode, the bufferable and cacheable bits are 
driven if a cacheable address is accessed.

The privileged bit is used by the writen protection unit for RAM accesses to distinguish 
between user/supervisor mode. The DSU and APB bridge can be configured, at 
implementation time, to select if registers should be equally accessible in user and supervisor 
mode or if only accesses from supervisor mode are allowed.

11.3.4 APB bus

The APB bridge is connected to the AHB bus as a slave and acts as the (only) master on the 
APB bus. The slaves are connected through a pair of records containing the APB signals:

type APB_Slv_In_Type is
      record
         PSEL:       Std_ULogic; 
         PENABLE:    Std_ULogic; 
         PADDR:      Std_Logic_Vector(PAMAX-1 downto 0);
         PWRITE:     Std_ULogic; 
         PWDATA:     Std_Logic_Vector(PDMAX-1 downto 0);
      end record;

type APB_Slv_Out_Type is
      record
         PRDATA:     Std_Logic_Vector(PDMAX-1 downto 0);
      end record;

The number of APB slaves and their address range is defined through the APB slave table in 
the TARGET package.

11.4 Floating-point unit and co-processor

11.4.1 Generic CP interface

LEON can be configured to provide a generic interface to a special-purpose co-processor. 
The interface allows an execution unit to operate in parallel to increase performance. One co-
processor instruction can be started each cycle as long as there are no data dependencies. 
When finished, the result is written back to the co-processor register file. The execution unit 
is connected to the interface using the following two records:

type cp_unit_in_type is record-- coprocessor execution unit input
  op1      : std_logic_vector (63 downto 0); -- operand 1
  op2      : std_logic_vector (63 downto 0); -- operand 2
  opcode   : std_logic_vector (9 downto 0);  -- opcode
  start    : std_logic;             -- start
  load     : std_logic;             -- load operands
  flush    : std_logic;             -- cancel operation
end record;
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type cp_unit_out_type is record-- coprocessor execution unit output
  res      : std_logic_vector (63 downto 0); -- result
  cc       : std_logic_vector (1 downto 0);  -- condition codes
  exc      : std_logic_vector (5 downto 0);  -- exception
  busy     : std_logic;             -- eu busy  
end record;

The waveform diagram for the execution unit interface can be seen in figure 63

Figure 63: Co-processor execution unit waveform diagram
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The execution unit is started by asserting the start signal together with a valid opcode. The 
operands are driven on the following cycle together with the load signal. If the instruction 
will take more than one cycle to complete, the execution unit must drive busy from the cycle 
after the start signal was asserted, until the cycle before the result is valid. The result, 
condition codes and exception information are valid from the cycle after the de-assertion of 
busy, and until the next assertion of start. The opcode (cpi.opcode[9:0]) is the concatenation 
of bits [19,13:5] of the instruction. If execution of a co-processor instruction need to be pre-
maturely aborted (due to an IU trap), cpi.flush will be asserted for two clock cycles. The 
execution unit should then be reset to its idle condition.

11.4.2 FPU interface

The LEON model two interface options for a floating-point unit: either a parallel interface or 
an integrated interface where FP instruction do not execute in parallel with IU instruction. 
Both interface methods expect an FPU core to have the same interface as described in figure 
63 above, and which also is the interface used by the Meiko FPU core.

The direct FPU interface does not implement a floating-point queue, the processor is stopped 
during the execution of floating-point instructions. This means that QNE bit in the %fsr 
register always is zero, and any attempts of executing the STDFQ instruction will generate a 
FPU exception trap. The parallel interface lets FPU instructions execute in parallel with IU 
instructions and only halts the processor in case of data- or resource dependencies. Refer to 
the SPARC V8 manual for a more in-depth discussion of the FPU and co-processor 
characteristics.

As of leon2-1.0.1, a partial implementation of an IEEE-754 compatible FPU is included in 
the model (fpu_lth.vhd). This FPU is contributed by Martin Kasprzyk, a student at Lund 
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Technical University, and does currently implement single- and double-precision addition, 
subtraction and compare. All rounding modes are implemented as well as a Meiko 
compatible interface. To make this FPU useful for LEON, multiplication, divide and square-
root must however also be implemented. A document describing this FPU is provided in 
doc.

11.5 Triple-modular redundancy registers (TMRR)

To protect against SEU errors, each on-chip register can be implemented using triple modular 
redundancy (TMR). This means that any SEU register error will be automatically removed 
within one clock cycle while the output of the register will maintain the correct (glitch-free) 
value. The TMR feature is enabled by the TMRREG field in the configuration record - if set 
to ‘true’, all on-chip registers will be implemented using TMR. The clocking scheme of the 
TMR registers is controlled by the TMRCLK field in the configuration record. If set to ‘true’, 
and independent clock tree will be used for each of the three registers making up one TMR 
module (see figure 6). If TMRCLK is set to ‘false’, all registers will be clocked by the same 
clock tree. The TMRCLK feature protects against transient errors in the clock tree, to the 
expense of increased routing.

Figure 6: TMR register with separate clock trees

D
Q

D
Q

D
Q

QFT

D

Clock pad

Voter

Clock trees
Aeroflex Gaisler / ESA



LEON2-FT User’s Manual 88 Version 2015.1
12 Model Configuration

The model is configurable to allow different cache sizes, multiplier performance, clock 
generation, and target technologies. The definition of the configuration records is in the 
TARGET package, while the active configuration record is defined and selected in the 
DEVICE package. The model is configured from a master configuration record which 
contains a number of sub-records which each configure a specific module/function:

-- complete configuration record type
type config_type is record
  synthesis: syn_config_type;
  iu   : iu_config_type;
  fpu  : fpu_config_type;
  cp  : cp_config_type;
  cache: cache_config_type;
  ahb  : ahb_config_type;
  apb  : apb_config_type;
  mctrl: mctrl_config_type;
  boot : boot_config_type;
  debug: debug_config_type;
  pci  : pci_config_type;
  peri : peri_config_type;
end record;

12.1 Synthesis configuration

The synthesis configuration sub-record is used to adapt the model to various synthesis tools 
and target libraries:

type targettechs is (gen, virtex, atc35, atc25);
-- synthesis configuration
type syn_config_type is record
  targettech: targettechs;
  infer_ram : boolean;-- infer cache ram automatically 
  infer_regf : boolean;-- infer regfile automatically 
  infer_rom: boolean;-- infer boot prom automatically
  infer_pads: boolean;-- infer pads automatically
  infer_mult: boolean;-- infer multiplier automatically

rftype : integer;-- register file implementation option
end record;

Depending on synthesis tool and target technology, the technology dependant mega-cells 
(ram, rom, pads) can either be automatically inferred or directly instantiated. Using direct 
instantiation, 8 types of target technologies are currently supported: Xilinx Virtex (FPGA), 
Atmel ATC35 and ATC25 (0.35 & 0.25 um CMOS), TSMC 0.25 um CMOS, UMC 0.25 & 
0.18 um CMOS, Actel ProAsic (FPGA), and Actel Axcelerator (anti-fuse FPGA). In 
addition, any technology that is supported by synthesis tools capable of automatic inference 
of mega-cells (Synplify and Leonardo) is also supported. When using tools with inference 
capability targeting Xilinx Virtex, a choice can be made to either infer the mega-cells 
automatically or to use direct instantiation. The choice is done by setting the parameters 
infer_ram, infer_regf and infer_rom accordingly.

The rftype option has impact on target technologies which are capable of providing more 
than one type of register file. Infer_mult selects how the multiplier is generated, for details 
see section 12.2 below.
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12.2 Integer unit configuration

The integer unit configuration record is used to control the implementation of the integer 
unit:

-- processor configuration
type multypes is (none, iterative, m32x8, m16x16, m32x16, m32x32);
type divtypes is (none, radix2);
type iu_config_type is record
  nwindows: integer;-- # register windows (2 - 32)
  multiplier: multypes;-- multiplier type
 mulpipe: boolean; -- multiplier pipeline registers
 divider   : divtypes;-- divider type
  mac : boolean; -- multiply/accumulate
  fpuen: integer range 0 to 1;-- FPU enable
  cpen: boolean; -- co-processor enable 
  fastjump   : boolean;-- enable fast jump address generation
  icchold   : boolean;-- enable fast branch logic
  lddelay: integer range 1 to 2; -- # load delay cycles (1-2)
  fastdecode : boolean;-- optimise instruction decoding (FPGA only)
  rflowpow   : boolean;-- disable regfile when not accessed
  watchpoints: integer range 0 to 4; -- # hardware watchpoints (0-4)
  impl   : integer range 0 to 15; -- IU implementation ID
  version: integer range 0 to 15; -- IU version ID
end record;

nwindows set the number of register windows; the SPARC standard allows 2 - 32 windows, 
but to be compatible with the window overflow/underflow handlers in the LECCS compiler, 
8 windows should be used.

The multiplier option selects how the multiply instructions are implemented The table 
below show the possible configurations:

Table 22: Multiplier configurations

Configuration
latency 
(clocks)

approx. area 
(Kgates)

iterative 35 1000

m16x16 + pipeline reg 5 6,500

m16x16 4 6,000

m32x8 4 5,000

m32x16 2 9,000

mx32x32 1 15,000

If infer_mult in the synthesis configuration record (see above) is false, the multipliers are 
implemented using the module generators in multlib.vhd. If infer_mult is true, the synthesis 
tool will infer a multiplier. For FPGA implementations, best performance is achieved when 
infer_mult is true and m16x16 is selected. ASIC implementations (using synopsys DC) 
should set infer_mult to false since the provided multiplier macros in MULTLIB are faster 
than the synopsys generated equivalents. The mac option enables the SMAC/UMAC 
instructions. Requires the multiplier to use the m16x16 configuration. The mulpipe option 
can be used to infer pipeline registers in the m16x16 multiplier when infer_mult is false. 
This will improve the timing of the multiplier but increase the latency from 4 to 5 clocks.
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The divider field select how the UDIV/SDIV instructions are implemented. Currently, only 
a radix-2 divider is available.

If an FPU will be attached, fpuen should be set to 1. If a co-processor will be attached, cpen
should be set to true.

To speed up branch address generation, fastjump can be set to implement a separate branch 
address adder. The pipeline can be configured to have either one or two load delay cycles 
using the lddelay option. One cycle gives higher performance (lower CPI) but may result in 
slower timing in ASIC implementations. Setting icchold will improve timing by adding a 
pipeline hold cycle if a branch instruction is preceded by an icc-modifying instruction. 
Similarly, fastdecode will improve timing by adding parallel logic for register file address 
generation. The rflowpow option will enable read-enable signals to the register file write 
ports, thereby saving power when the register file is not accessed. However, this option might 
introduce a critical path to the read-enable ports on some register files.

Setting watchpoint to a value between 1 - 4 will enable corresponding number of watch-
points. Setting it to 0, will disable all watch-point logic. The impl and version fields are 
used to set the fixed fields in the %psr register.

12.3 FPU configuration

The FPU configuration record is used to select FPU interface and core type:

type fpucoretype  is (meiko, lth, grfpu);  -- FPU core type
type fpuiftype is (none, serial, parallel);         -- FPU interface type
type fpu_config_type is record
  core: fpucoretype;-- FPU core type
  interface: fpuiftype;-- FPU inteface type
  fregs: integer; -- 32 for serial interface, 0 for parallel 
  version: integer range 0 to 7; -- FPU version ID
end record;

The core element can either be meiko, lth or grfpu, selecting which of the three cores will 
be used. The interface element defines whether to use a serial, parallel or none (no FPU) 
interface. The version element defines the (constant) FPU version ID in the %fsr register.

12.4 Cache configuration

The cache is configured through the cache configuration record:

type dsnoop_type is (none, slow, fast); -- snoop implementation type
constant PROC_CACHE_MAX: integer := 4;   -- maximum cacheability ranges
constant PROC_CACHE_ADDR_MSB : integer := 3; 
subtype proc_cache_addr_type is std_logic_vector(PROC_CACHE_ADDR_MSB-1 downto 0);

type proc_cache_config_type is record
  firstaddr: proc_cache_addr_type;
  lastaddr: proc_cache_addr_type;
end record;

type proc_cache_config_vector is array (Natural Range <> ) of
proc_cache_config_type;

constant proc_cache_config_void : proc_cache_config_type :=
  ((others => ’0’), (others => ’0’));

type cache_replace_type is (lru, lrr, rnd, rndrepl);  -- cache replacement algorithm
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constant MAXSETS  : integer := 4;

type cache_config_type is record
  isets         : integer range 1 to MAXSETS;   -- # of sets in icache
  isetsize: integer;-- I-cache size per set in kbytes
  ilinesize: integer;-- # words per I-cache line
  ireplace      : cache_replace_type;         -- icache replacement algorithm
  ilock     : integer;-- icache locking
  dsets         : integer range 1 to MAXSETS;   -- # of sets in dcache
  dsetsize: integer;-- D-cache size per set in kbytes
  dlinesize: integer;-- # words per D-cache line
  dreplace      : cache_replace_type;         -- icache replacement algorithm
  dlock     : integer;-- dcache locking
  dsnoop    : dsnoop_type;-- data-cache snooping
  drfast    : boolean;-- data-cache fast read-data generation
  dwfast    : boolean;-- data-cache fast write-data generation
  cachetable : proc_cache_config_vector(0 to PROC_CACHE_MAX-1);
end record;

Valid settings for the cache set size are 1 - 64 (kbyte), and must be a power of 2. The line size 
may be 4 - 8 (words/line). Valid settings for the number of sets are 1 - 4 (2 if LRR algorithm 
is selected). Replacement algorithm may be random, LRR or LRU. The instruction and data 
caches may be configured independently. The dlock and ilock fields enable cache locking 
for the data and instruction cache respectively. The drfast field enables parallel logic to 
improve data cache read timing, while the dwfast field improves data cache write timing.

The cacheability table defines which areas are considered to be cacheable by the instruction 
and data cache controllers. The default table marks only prom and ram areas as cacheable:

-- standard cacheability config
constant cachetbl_std : proc_cache_config_vector(0 to PROC_CACHE_MAX-1) := (
-- first    last        function   address[31:28]
  ("0000", "0010"),   -- PROM area    0x0- 0x2
  ("0100", "1000"),   -- RAM area     0x4- 0x8
   others => proc_cache_config_void);

12.5 Memory controller configuration

The memory controller is configured through the memory controller configuration record:

type mctrl_config_type is record
  bus8en    : boolean; -- enable 8-bit bus operation
  bus16en    : boolean;-- enable 16-bit bus operation
  wendfb    : boolean; -- enable wen feed-back to data bus drivers
  ramsel5 : boolean; -- enable 5th ram select
  sdramen    : boolean;-- enable sdram controller
  sdinvclk   : boolean;-- invert sdram clock
end record;

The 8- and 16-bit memory interface features are optional; if set to false the associated 
function will be disabled, resulting in a smaller design. The ramsle5 fields enables the fifth 
(RAMSN[4]) chip select signal in the memory controller. The sdramen field enables the 
SDRAM controller, while sdinvclk controls the polarity of the SDRAM clock. If sdinvclk
is true, the SDRAM clock output (SDCLK) will be inverted with respect to the system clock.

12.6 Debug configuration

Various debug features are controlled through the debug configuration record:

type debug_config_type is record
  enable    : boolean;-- enable debug port
  uart     : boolean;-- enable fast uart data to console
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  iureg    : boolean;-- enable tracing of iu register writes
  fpureg      : boolean;-- enable tracing of fpu register writes
  nohalt      : boolean;-- dont halt on error
  pclow       : integer;-- set to 2 for synthesis, 0 for debug
  dsuenable    : boolean;-- enable DSU
  tracesize: integer;-- # trace buffer size in kbyte
 dsuprot : boolean; -- require supervisor for DSU access
end record;

The enable field has to be true to enable the built-in disassembler (it does not affect 
synthesis) and to allow DSU operations. Setting uart to true will tie the UART transmitter 
ready bit permanently high for simulation (does not affect synthesis) and output any sent 
characters on the simulator console (line buffered). The UART output (TX) will not simulate 
properly in this mode. Setting iureg will trace all IU register writes to the console. Setting 
fpureg will trace all FPU register writes to the console. 

Setting nohalt will cause the processor to take a reset trap and continue execution when 
error mode (trap in a trap) is encountered. Do NOT set this bit for synthesis since it will 
violate the SPARC standard and will make it impossible to halt the processor.

Since SPARC instructions are always word-aligned, all internal program counter registers 
only have 30 bits (A[31:2]), making them difficult to trace in waveforms. If pclow is set to 
0, the program counters will be made 32-bit to aid debugging. Only use pclow=2 for 
synthesis.

The dsuenable field enables the debug support unit and dsuprot prevents user mode 
accesses to the DSU register interface.

dsutrace enables the trace buffer. The tracelines field indicates how many lines the trace 
buffer should contain. Note that for each line in the trace buffer, 16 bytes will be used by the 
trace buffer memory. The dsumixed field enables the mixed tracing mode (simultaneous 
instruction and AHB tracing). The dsudpram enables the DSU trace buffer to be 
implemented with dual-port rams, otherwise ordinary single-port rams are used. Ram blocks 
with 32-bit width will be used for the trace buffer memory; the table below shows the type 
and number of blocks used as a function of the configuration options.

Table 23: DSU trace buffer ram usage

dsumixed dsudpram single-port dual-port 

false false 4 0

false true 0 2

true false 8 0

true false 0 4

12.7 Peripheral configuration

Enabling of peripheral function is controlled through the peripheral configuration record:

type irq_filter_type is (lvl0, lvl1, edge0, edge1);
type irq_filter_vec is array (0 to 31) of irq_filter_type;

type irq2type is record
  enable   : boolean;-- secondary interrupt controller
  channels : integer;-- number of additional interrupts (1 - 32)
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  filter: irq_filter_vec; -- irq filter definitions
end record;

type peri_config_type is record
  cfgreg   : boolean;-- enable LEON configuration register
  ahbstat  : boolean;-- enable AHB status register
  wprot  : boolean;-- enable RAM write-protection unit
  wdog   : boolean;-- enable watchdog
  irq2cfg : irq2type;-- chained interrupt controller config
  ahbram : boolean;-- enable AHB RAM
  ahbrambits : integer;-- address bits in AHB ram
 irqctrlmux : boolean; -- MUX before interrupt controller
 pwmfct : boolean; -- IOport PWM function
 pwmpbit : integer; -- PWM prescaler size
end record;

If not enabled, the corresponding function will be suppressed, resulting in a smaller design.

The secondary interrupt controller is enabled by selecting a configuration record with 
irq2cfg.enable = true. An example record defining four extra interrupts could look like this:

constant irq2chan4 : irq2type := ( enable => true, channels => 4,
  filter => (lvl0, lvl1, edge0, edge1, others => lvl0));

Lvl0 mean that the interrupt will be treated as active low, lvl1 as active high, edge0 as 
negative edge-triggered and edge1 as positive edge-triggered. Since the registers in the 
secondary interrupt controller are accessed through the APB bus, an APB configuration with 
the interrupt controller present must be selected.

The on-chip AHB ram is enabled by setting ahbram to true. The ahbrambits denote the 
number of address bits used by the ram. Since a 32-bit ram is used, 8 address bits will results 
in a 1-kbyte ram block. Note that the ahbram unit provided with the LEON2FT model does 
not implement fault tolerance mechanisms.

The interrupt controller interrupt map registers are enabled by setting irqctrlmux to true.

The IOPORT PWM functionality is enabled by setting pwmfct to true. The number of bits 
in the PWM prescaler is determined by pwmpbit.

12.8 Fault-tolerance configuration

The fault-tolerance configuration is configured through the fault-tolerance configuration 
record in device.vhd:

type ft_config_type is record
  rfpbits   : integer;-- number of regfile parity bits (0,1,2,7)
  tmrreg   : boolean;-- enable TMR registers
  tmrclk   : boolean;-- enable TMR clock
  mscheck  : boolean;-- enable master/checker logic
  memedac  : boolean;-- enable memory EDAC
  rfwropt    : boolean;-- fast regfile write port checksum generation
  cparbits: integer;-- number of cache parity bits (0,1,2)
  caddrpar: boolean;-- include address in cache parity
  regferr      : boolean;-- enable error injection in regfile
  cacheerr    : boolean;-- enable error injection in cache
end record;

The field have the following meaning:

• rfpbits: Number of register file protection bits (0, 1, 2 or 7).
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• rfwopt: Speeds up register file checkbit generation during register file write.
• memedac: Enable memory controller EDAC.
• tmrreg: Infer TMR registers for on-chip registers.
• tmrclk: Use separate clock tree for each of the three registers in the TMR cells.
• cparbits: Number of cache parity bits (0, 1, 2).
• caddrpar Include cache address in the cache parity generation.
• regferr: Inject errors in register file (simulation only)
• cacheerr: Inject errors in cache rams (simulation only)

12.9 AMBA configuration

The AMBA buses are the main way of adding new functional units. The LEON model 
provides a flexible configuration method to add and map new AHB/APB compliant modules. 
The full AMBA configuration is defined through two configuration sub-records, one for the 
AHB bus and one for APB:

type ahb_config_type is record
  masters: integer range 1 to AHB_MST_MAX;
  defmst : integer range 0 to AHB_MST_MAX-1;
  split  : boolean;-- add support for SPLIT reponse
  slvtable : ahb_slv_config_vector(0 to AHB_SLV_MAX-1);
  cachetable : ahb_cache_config_vector(0 to AHB_CACHE_MAX-1);
end record;

type apb_config_type is record
  table    : apb_slv_config_vector(0 to APB_SLV_MAX-1);
 pipe : boolean;
end record;

12.9.1 AHB master configuration

The number of attached masters is defined by the masters field in the AHB configuration 
record. The masters are connected to the ahbmi/ahbmo buses in the MCORE module. AHB 
master should be connected to index 0 - (masters-1) of the ahbmi/ahbmo buses. The defmst 
field indicates which master is granted by default if no other master is requesting the bus.

12.9.2 AHB slave configuration

The number of AHB slaves and their address range is defined through the AHB slave table. 
The default table has four pre-defined slaves: the memory controller, APB bridge, DSU and 
PCI:

-- standard slave config
constant ahbslvcfg_dsu : ahb_slv_config_vector(0 to AHB_SLV_MAX-1) := (
-- first    last  index  split  enable  function            HADDR[31:28]
  ("0000", "0111",  0,   false, true), -- memory controller,   0x0- 0x7
  ("1000", "1000",  1,   false, true), -- APB bridge, 128 MB   0x8- 0x8
  ("1001", "1001",  2,   false, true), -- DSU         128 MB   0x9- 0x9
  ("1100", "1111",  3,   false, false),-- PCI initiator        0xC- 0xF
   others => ahb_slv_config_void);

The table also indicates if the slave is capable of returning a SPLIT response; if so, the split
element should be set to true, thereby generating the necessary split support logic in the AHB 
arbiter. To add or remove an AHB slave, edit the configuration table and the AHB bus 
decoder/multiplexer and will automatically be reconfigured. The AHB slaves should be 
Aeroflex Gaisler / ESA



LEON2-FT User’s Manual 95 Version 2015.1
connected to the ahbsi/ahbso buses. The index field in the table indicates which bus index 
the slave should connect to.

12.9.3 APB configuration

The APB bridge can optionally include pipeline registers in the data vectors. This is 
controlled via the pipe member in the apb_config_type record.

The number of APB slaves and their address range is defined through the APB slave table in 
the TARGET package.

constant APB_SLV_MAX   : integer := 16;  -- maximum APB slaves
constant APB_SLV_ADDR_BITS : integer := 10;  -- address bits to decode APB slaves
subtype apb_range_addr_type is std_logic_vector(APB_SLV_ADDR_BITS-1 downto 0);
type apb_slv_config_type is record
  firstaddr: apb_range_addr_type;
  lastaddr: apb_range_addr_type;
  index   : integer;
  enable: boolean;
 prot : boolean;
end record;
type apb_slv_config_vector is array (Natural Range <> ) of apb_slv_config_type;
constant apb_slv_config_void : apb_slv_config_type :=
  ((others => ’0’), (others => ’0’), 0, false);
constant apbslvcfg_std : apb_slv_config_vector(0 to APB_SLV_MAX-1) := (
--   first         last      index enable prot function           PADDR[9:0]
( "0000000000", "0000001000",  0, true, false), -- memory controller, 0x00 - 0x08
( "0000001100", "0000010000",  1, true, false), -- AHB status reg.,   0x0C - 0x10
( "0000010100", "0000011000",  2, true, false), -- cache controller,  0x14 - 0x18
( "0000011100", "0000100000",  3, true, false), -- write protection,  0x1C - 0x20
( "0000100100", "0000100100",  4, true, false), -- config register,   0x24 - 0x24
( "0001000000", "0001101100",  5, true, false), -- timers,            0x40 - 0x6C
( "0001110000", "0001111100",  6, true, false), -- uart1,             0x70 - 0x7C
( "0010000000", "0010001100",  7, true, false), -- uart2,             0x80 - 0x8C
( "0010010000", "0010011100",  8, true, false), -- interrupt ctrl     0x90 - 0x9C
( "0010100000", "0010101100",  9, true, false), -- I/O port           0xA0 - 0xAC
( "0010110000", "0010111100", 10, false, false),-- 2nd interrupt ctrl 0xB0 - 0xBC
( "0011000000", "0011001100", 11, false, false),-- DSU uart           0xC0 - 0xCC
( "0011010000", "0011011100",  3, true,  false),-- write protection 0xD0 - 0xDC
( "0011100000", "0011101100",  8, false, false),-- interrupt ctrl (mux) 0xE0 - 0xEC
( "0100000000", "0111111100", 12, false, false),-- PCI configuration  0x100- 0x1FC
( "1000000000", "1011111100", 13, false, false),-- PCI arbiter        0x200- 0x2FC
  others => apb_slv_config_void);

type apb_config_type is record
  table    : apb_slv_config_vector(0 to APB_SLV_MAX-1);
 pipe : boolean;
end record;

constant apb_std : apb_config_type := (table => apbslvcfg_std);

The table is used to automatically configure the AHB/APB bridge. To add APB slaves, edit 
the slave configuration table and add your modules in MCORE. The APB slaves should be 
connected to the apbi/apbo buses. The index field in the table indicates which bus index 
the slave should connect to. The enable field indicates whether the slave is enabled. If false, 
then any access to this address range will be ignored. No psel signal is generated on the APB 
bus and HRESP_OK answer is given on the AHB bus. The prot field indicates whether the 
slave is in protected mode, i.e. can be accessed only in supervisor mode. If true, then any 
access to this address range in user mode will lead to an AHB error response and no psel
signal being asserted.
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13 Porting to a new technology or synthesis tool

13.1 General

LEON uses three types of technology dependant cells; rams for the cache memories, 3-port 
register file for the IU/FPU registers, and pads. These cells can either be inferred by the 
synthesis tool or directly instantiated from a target specific library. For each technology or 
instantiation method, a specific package is provided. The selection of instantiation method 
and target library is done through the configuration record in the TARGET package. The 
following technology dependant packages are provided:

Table 24: Technology mapping packages

package technology RAM PADS

TECH_GENERIC Behavioural models  inferred inferred

TECH_VIRTEX Xilinx VIRTEX  instantiated inferred

TECH_VIRTEX2 Xilinx VIRTEX 2/4/5 FPGA  instantiated inferred

TECH_ATC18/25/35 Atmel ATC18/25/35  instantiated instantiated

TECH_FS90 UMC FS90A/B  instantiated instantiated

TECH_UMC18 UMC 0.18 um CMOS  instantiated instantiated

TECH_TSMC25 TSMC 0.25 um w. Artisan rams  instantiated instantiated

TECH_PROASIC Actel Proasic FPGA  instantiated inferred

TECH_AXCEL Actel AX anti-fuse FPGA  instantiated inferred

TECH_MAP Selects mega-cells depending on 
configuration

-

The technology dependant packages can be seen a wrappers around the mega cells provided 
by the target technology or synthesis tool. The wrappers are then called from TECH_MAP, 
where the selection is done depending on the configured synthesis method and target 
technology. To port to a new tool or target library, a technology dependant package should 
be added, exporting the proper cell generators. In the TARGET package, the targettechs type 
should be updated to include the new technology or synthesis tool, while the TECH_MAP 
package should be edited to call the exported cell generators for the appropriate 
configuration.

13.2 Target specific mega-cells

13.2.1 Integer unit register-file

The IU register-file must have one 32-bits write port and two 32-bits read ports. The number 
of registers depend on the configured number of register windows. The standard 
configuration of 8 windows requires 136 registers, numbered 0 - 135. Note that register 128 
is not used and will never be written (corresponds to SPARC register %g0).

If the Meiko FPU is enabled using the direct interface, the register file should have 32 extra 
registers to store the FPU registers (i.e 168 registers for 8 register windows + FPU). For all 
target technologies (FPGA and ASIC), the register file is currently implemented as two 
parallel dual-port rams, each one with one read port and one write port.
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The register file must provide the read-data at the end of the same cycle as the read address 
is provided (figure 64). This can be implemented with asynchronous read ports, or by 
clocking a synchronous read port on the negative clock (CLKN). Read/write collisions in the 
same cycle (RA1/WA1) does not have to be handled since this will be detected in the IU 
pipeline and the write data will be bypassed automatically. However, collision between two 
consecutive cycles (WA1/RA2) is not handled and the register file must provide a bypass in 
case write-through is not supported.

Figure 64: IU register file read/write timing
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The TECH_ATC35 package provides an example of a synchronous register file clocked on 
the inverted clock, while TECH_ATC25 shows an example of a fully asynchronous register 
file. TECH_GENERIC contains an example of WA1/RA2 contention and associated bypass 
logic.

The register file data width will increase with the number of protection bit used (1, 2 or 7).

The TECH_GENERIC package contains three different implementation for the register file, 
selected by the configuration option rftype:

• Synchronous operation: two memories are instantiated to provide two read ports, all 
operations are synchronous to the clock.

• Asynchronous operation: two memories are instantiated to provide two read ports, only 
writes are synchronous to the clock.

• Synthesizable Flip-Flop based register file which can be used in all ASIC 
implementations. Only a single memory instance is requires which has two combinatorial 
read muxes. For a 136x32 register file, 4352 FFs will be inferred. This implementation can 
be used with SEU hardened FFs (so no EDAC required) or with not-hardened FFs (thus in 
combination with EDAC protection).

13.2.2 Parallel FPU & co-processor register file

The parallel FPU and co-processor uses a separate register file with 32 32-bit words. The 
FPU/CP controller (fp1eu.vhd) instantiates two 16x32 register files to make up one 32x32 
register file with two 64-bit read ports and one 64-bit write port with individual(32-bits) write 
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enables. To use fp1eu.vhd, the technology file must contain a register file with two 32-bit 
read ports and one 32-bit write port. All ports should operate synchronously on the rising 
edge. Read/write contention in the same cycle does not have to be handled, the FPU/CP 
controller contains contention and bypass logic. See TECH_GENERIC and TECH_ATC25 
for examples.

13.2.3 Cache ram memory cells

Synchronous single-port ram cells are used for both tag and data in the cache. The width and 
depth depends on the configuration as defined in the configuration record. The table below 
shows the ram size for certain cache configurations:

Table 25: Cache ram cell sizes

Cache size Words/line tag ram data ram

 1 kbyte 8 32x30 256x32

 1 kbyte 4 64x26 256x32

 2 kbyte 8 64x29 512x32

 2 kbyte 4 128x25 512x32

4 kbyte 8 128x28 1024x32

4 kbyte 4 256x24 1024x32

8 kbyte 8 256x27 2048x32

8 kbyte 4 512x23 2048x32

16 kbyte 8 512x26 4096x32

16 kbyte 4 1024x22 4096x32

If cache parity is enabled, the width of the corresponding ram cell will increase with the 
number of parity bits used (1 or 2).

The cache controllers are designed such that the used ram cells do NOT have to support 
write-through (simultaneous read of written data).

13.2.4 Dual-port rams

If data cache snooping is enabled, or the DSU trace buffer is set to use dual-port rams, the 
target technology must contains synchronous dual-port rams. The dual-port rams will be 
used to implement the data cache tag memory or the trace buffer memory. Currently, only the 
TECH_VIRTEX, TECH_ATC25 and TECH_TSMC25 packages include mappings to dual-
port rams.

13.2.5 Pads

Technology specific pads are usually automatically inferred by the synthesis tool targeting 
FPGA technologies. For ASIC technologies, generate statements are used to instantiate 
technology dependant pads. The selection of pads is done in TECH_MAP. Output pads has 
a generic parameter to select driving strength, see TECH_ATC25 for examples.
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13.2.6 Adding a new technology or synthesis tool

Adding support for a new target library or synthesis tool is done as follows:

1. Create a package similar to tech_*.vhd, containing the specific rams, regfile, and pads.

2. Edit target.vhd to include your technology or synthesis tool in targettechs.

3. Edit tech_map.vhd to instantiate the cells when the technology is selected.

4. Define and select a configuration using the new technology (target.vhd/device.vhd).
Aeroflex Gaisler / ESA


	1 Introduction
	1.1 Overview
	1.2 Functional overview
	1.2.1 Integer unit
	1.2.2 Floating-point unit
	1.2.3 Cache sub-system
	1.2.4 Memory Management Unit
	1.2.5 Debug support unit
	1.2.6 Memory interface
	1.2.7 Timers
	1.2.8 Watchdog
	1.2.9 UARTs
	1.2.10 Interrupt controller
	1.2.11 Parallel I/O port
	1.2.12 AMBA on-chip buses
	1.2.13 Watchpoint registers

	1.3 Performance

	2 Simulation and synthesis
	2.1 Un-packing the tar-file
	2.2 Configuration
	2.3 Simulation
	2.3.1 Compilation of the model
	2.3.2 Generic test bench
	2.3.3 Disassembler
	2.3.4 Simulator specific support
	2.3.5 Post-synthesis simulation

	2.4 Synthesis
	2.4.1 General
	2.4.2 Synplify
	2.4.3 Synopsys-DC

	2.5 GRFPU integration

	3 LEON integer unit
	3.1 Overview
	3.2 Instruction pipeline
	3.3 Multiply instructions
	3.4 Multiply and accumulate instructions
	3.5 Divide instructions
	3.6 Register file SEU protection
	3.7 Processor reset operation
	3.8 Exceptions
	3.9 Hardware breakpoints
	3.10 Floating-point unit

	4 Cache sub-system
	4.1 Overview
	4.2 Instruction cache
	4.2.1 Operation
	4.2.2 Instruction cache tag

	4.3 Data cache
	4.3.1 Operation
	4.3.2 Write buffer
	4.3.3 Data cache snooping
	4.3.4 Data cache tag

	4.4 Cache flushing
	4.5 Diagnostic cache access
	4.6 Cache line locking
	4.7 Cache parity protection
	4.8 Cache Control Register

	5 Memory management unit
	5.1 ASI mappings
	5.2 Caches
	5.3 MMU registers
	5.4 Translation look-aside buffer (TLB)

	6 AMBA on-chip buses
	6.1 Overview
	6.2 AHB bus
	6.3 APB bus
	6.4 AHB transfers generated by the processor

	7 On-chip peripherals
	7.1 On-chip registers
	7.2 Interrupt controller
	7.2.1 Operation
	7.2.2 Interrupt (re)map registers
	7.2.3 Reset values
	7.2.4 Interrupt assignment
	7.2.5 Control registers

	7.3 Secondary interrupt controller
	7.3.1 Operation
	7.3.2 Control registers

	7.4 Timer unit
	7.4.1 Operation
	7.4.2 Registers

	7.5 UARTs
	7.5.1 Transmitter operation
	7.5.2 Receiver operation
	7.5.3 Baud-rate generation
	7.5.4 Loop back mode
	7.5.5 Interrupt generation
	7.5.6 UART registers

	7.6 Parallel I/O port
	7.6.1 PWM functionality

	7.7 LEON configuration register
	7.8 Power-down
	7.9 AHB status register

	8 External memory access
	8.1 Memory interface
	8.2 Memory controller
	8.3 PROM access
	8.4 Memory mapped I/O
	8.5 SRAM access
	8.6 Burst cycles
	8.7 8-bit and 16-bit PROM and SRAM access
	8.8 8- and 16-bit I/O access
	8.9 SDRAM access
	8.9.1 General
	8.9.2 Address mapping
	8.9.3 Initialisation
	8.9.4 Configurable SDRAM timing parameters
	8.9.5 Refresh
	8.9.6 SDRAM commands
	8.9.7 Read cycles
	8.9.8 Write cycles
	8.9.9 Address bus connection

	8.10 Memory EDAC
	8.11 Memory configuration register 1 (MCFG1)
	8.12 Memory configuration register 2 (MCFG2)
	8.13 Memory configuration register 3 (MCFG3)
	8.14 Write protection
	8.14.1 Overview
	8.14.2 Address/mask write protection
	8.14.3 Start/end address write protection
	8.14.4 Generation of write protection

	8.15 Using BRDYN
	8.16 Access errors
	8.17 Attaching an external DRAM controller
	8.18 Lead-out cycles

	9 Hardware debug support
	9.1 Overview
	9.2 Debug support unit
	9.2.1 Overview
	9.2.2 Trace buffer
	9.2.3 AHB trace buffer filtering
	9.2.4 DSU memory map
	9.2.5 DSU control register
	9.2.6 DSU breakpoint registers
	9.2.7 DSU trap register

	9.3 DSU communication link
	9.3.1 Operation
	9.3.2 DSU UART control register
	9.3.3 DSU UART status register
	9.3.4 Baud rate generation

	9.4 Common operations
	9.4.1 Instruction breakpoints
	9.4.2 Single stepping
	9.4.3 Alternative debug sources
	9.4.4 Booting from DSU

	9.5 Design limitations
	9.6 DSU monitor
	9.7 External DSU signals

	10 Signals
	10.1 Memory bus signals
	10.2 System interface signals
	10.3 Signal description

	11 VHDL model architecture
	11.1 Model hierarchy
	11.2 Model coding style
	11.3 AMBA buses
	11.3.1 AMBA AHB
	11.3.2 AHB cache aspects
	11.3.3 AHB protection signals
	11.3.4 APB bus

	11.4 Floating-point unit and co-processor
	11.4.1 Generic CP interface
	11.4.2 FPU interface

	11.5 Triple-modular redundancy registers (TMRR)

	12 Model Configuration
	12.1 Synthesis configuration
	12.2 Integer unit configuration
	12.3 FPU configuration
	12.4 Cache configuration
	12.5 Memory controller configuration
	12.6 Debug configuration
	12.7 Peripheral configuration
	12.8 Fault-tolerance configuration
	12.9 AMBA configuration
	12.9.1 AHB master configuration
	12.9.2 AHB slave configuration
	12.9.3 APB configuration


	13 Porting to a new technology or synthesis tool
	13.1 General
	13.2 Target specific mega-cells
	13.2.1 Integer unit register-file
	13.2.2 Parallel FPU & co-processor register file
	13.2.3 Cache ram memory cells
	13.2.4 Dual-port rams
	13.2.5 Pads
	13.2.6 Adding a new technology or synthesis tool





